contents

Joreword xi

preface xiii

acknowledgments xiv

about this book xui

about the author xxii

about the cover illustration xxiii

PART 1 GETTING STARTED WITH MODERN FORTRAN........1

J Introducing Fortran 3
i 1.1 Whatis Fortran? 4

1.2 Fortran features 6

1.3 Why learn Fortran? 8

1.4 Advantages and disadvantages 10
Side-by-side comparison with Python 10

1.5 Parallel Fortran, illustrated 12

1.6 What will you learn in this book? 13

1.7 Think parallel! 14
Copying an array from one prrocessor to another 17

iv CONTENTS

1.8 Running example: A parallel tsunami simulator 22
Why tsunami simulator? 22 = Shallow water equations 23
What we want our app to do 24

1.9 Further reading 25

% Getting started: Minimal working app 26
L 2.1 Compiling and running your first program 27
2.2 Simulating the motion of an object 28
What should our app do? 29 = What is advection? 30

2.3 Implementing the minimal working app 31

Implementation strategy 32 = Defining the main program 33
Declaring and initializing variables 34 = Numeric data types 35
Declaring the data to use in our app 37 » Branching with an if
block 40 = Using a do loop to iterate 42 = Setting the initial
walter height values 44 = Predicting the movement of the

object 45 ® Printing results to the screen 47 = Putting it

all together 47

2.4 Going forward with the tsunami simulator 51

2.5 Answer key 52
Exercise: Cold front propagation 52

2.6 New Fortran elements, at a glance 52
2.7 Further reading 52

PART 2 CORE ELEMENTS OF FORTRAN i1vvreveecssssnncsnscenss DD

"> Whriting reusable code with functions and subroutines 57

g ng

~" 3.1 Toward higher app complexity 58
Refactoring the tsunami simulator 58 = Revisiting the cold front
problem 61 = An overview of Fortran program units 63

3.2 Don’t repeat yourself, use procedures 65

Your first function 65 = Expressing finite difference as a_function
in the tsunami simulator 70

3.3 Modifying program state with subroutines 72

Defining and calling a subroutine 72 = When do you use a
subroutine over a function? 74 = Initializing water height in
the tsunami simulator 75

3.4

3.6
3.7
3.8

3.9
3.10

CONTENTS

Writing pure procedures to avoid side effects 76
What is a pure procedure? 76 * Some restrictions on pure
procedures 77 = Why are pure functions important? 77

Writing procedures that operate on both scalars
and arrays 77

Procedures with optional arguments 79

Tsunami simulator: Putting it all together 81

Answer key 82

Exercise 1: Modifying state with a subroutine 82 = Exercise 2:
Writing an elemental function that operates on both scalars

and arrays 83

New Fortran elements, at a glance 83
Further reading 84

Organizing your Fortran code using modules 85

4.1

4.2

4.3

4.4

4.5
4.6

5.1

Accessing a module 86
Gelling compiler version and options 86 = Using portable
data types 89

Creating your first module 91

The structure of a custom module 92 = Defining a module 93
Compiling Fortran modules 95 = Controlling access to variables
and procedures 97 = Pultting it all together in the tsunami
simulator 98

Toward realistic wave simulations 99

A brief look at the physics 101 = Updating the finite difference
calculation 102 = Renaming imporied enlities to avoid name

conflict. 104 = The complete code 105

Answer key 107

Exercise 1: Using portable type kinds in the tsunami simulator 107
Exercise 2: Defining the sel_gaussian subroutine in a module 107

New Fortran elements, at a glance 108
Further reading 108

~. Analyzing time series data with arrays 110

Analyzing stock prices with Fortran arrays 111

Objectives for this exercise 111 = About the data 112
Getting the data and code 114

CONTENTS

5.2 Finding the best and worst performing stocks 114

Declaring arrays 116 » Array constructors 118 » Reading stock
data from files 121 = Allocating arrays of a cerlain size or

range 122 = Allocating an array from another array 123
Automatic allocation on assignment 123 = Cleaning up after
use 124 = Checking for allocation status 126 = Catching
allocation and deallocation errors 126 = Implementing the CSV
reader subroutine 127 = Indexing and slicing arrays 129

5.3 Identifying risky stocks 132
5.4 Finding good times to buy and sell 135
5.5 Answer key 139

Exercise 1: Convenience (de)allocator subroutines 139 = Exercise 2:
Reversing an array 140 = Exercise 3: Calculating moving average
and standard deviation 140

5.6 New Fortran elements, ata glance 141

5.7 Further reading 141

Reading, writing, and formatting your data 143
6.1 Your first I/O: Input from the keyboard and
output to the screen 144
The simplest /0 144 ® Reading and writing multiple variables at
once 147 = Standard input, output, and error 148
6.2 Formatting numbers and text 151

Designing the aircraft dashboard 151 = Formalling strings,
broken down 152 = Format statements in legacy Fortran
code 157

6.3 Writing to files on disk: A minimal note-taking app 157
Opening a file and writing to it 158 = Opening a file 159
Writing to a file 161 = Appending to a file 162 = Opening
files in read-only or write-only mode 163 » Chechking whether
a file exists 164 = Error handling and closing the file 167

6.4 Answer key 168
Exercise: Redirect stdout and stderr to ﬁ.‘.’es 168

6.5 New Fortran elements, at a glance 169

CONTENTS vii

PART 3 fm‘?ANCED FORTRAN USE (AR ENE RN SR AN SRR RS ERERE RE RSN N }_71

7 Going parallel with Fortran coarrays 173
/ Goingp @

Fy

4 7.1 Why write parallel programs? 174
7.2 Processing real-world weather buoy data 175
About the data 176 = Getting the data and code 178
Objectives 178 = Serial implementation of the program 179
7.3 Parallel processing with images and coarrays 181

Fortran images 182 = Getting information about the images 183
Telling images what to do 184 = Gathering all data to a single
image 186

7.4 Coarrays and synchronization, explained 187
Declaring coarrays 188 = Allocating dynamic coarrays 188

Sending and receiving data 189 = Controlling the order of
image execution 191

7.5 Toward the parallel tsunami simulator 192

Implementation strategy 192 = Finding the indices of neighbor
images 194 = Allocating the coarrays 195 = The main
time loop 196

7.6 Answer key 199

Exercise 1: Finding the array subranges on each image 199
Exercise 2: Writing a function that returns the indices
of neighbor images 200

7.7 New Fortran elements, at a glance 201

7.8 Further reading 201

bﬁ?f Working with abstract data using derived types 202

* 8.1 Recasting the tsunami simulator with derived types 203
8.2 Defining, declaring, and initializing derived types 206

Defining a derived type 209 = Instantiating a derived type 210
Accessing derived type components 212 = Positional vs. keyword
arguments in derived type constructors 212 = Providing default
values for derived type components 214 = Writing a cuslom type
constructor 215 = Custom type constructor for the Field type 218

8.3 Binding procedures to a derived type 220

Your first type-bound method 220 = Type-bound methods for the
Field type 221 = Controlling access to type components and
methods 222 = Bringing it all together 224

CONTENTS

8.4 Extending tsunami to two dimensions 224

Going from 1-D to 2-D arrays 225 » Updaling the equation
set 226 = Finite differences in x andy 226 = Passing a class
instance to diffx and diffy functions 228 = Derived type

impimmmtinn ﬂf the tsunami solver 229

8.5 Answer key 231
Exercise 1: Working with private components 231 = Exercise 2:
Invoking a type-bound method from an array of instances 233
Exercise 3: Computing finite difference in y divection. 233

8.6 New Fortran elements, at a glance 234

8.7 Further reading 235

{) Generic procedures and operators for any data type 236
9.1 Analyzing weather data of different types 237

About the data 238 = Objectives 241 = Strategy for this
exercise 242

9.2 Type systems and generic procedures 242
Static versus strong typing 242

9.3 Writing your first generic procedure 243

The problem with strong typing 243 = Writing the specific
Sfunctions 244 = Whiting the generic interface 247 » Results
and complete program 251

9.4 Built-in and custom operators 253
What's an operator? 253 » Things to do with operators 253
Fortran’s built-in operators 255 = Operator precedence 257
Writing custom operators 257 » Redefining built-in
operators 258

9.5 Generic procedures and operators in the tsunami
simulator 259
Writing user-defined operators for the Field type 259

9.6 Answer key 260

Exercise 1: Specific average function for a derived type 260
Exercise 2: Defining a new string concatenation operator 262

9.7 New Fortran elements, at a glance 263

¥ {’5 User-defined operators for derived types 264
£ 101 Happy Birthday! A countdown app 265
Some basic specification 265 » Implementation strategy 266

10.2

10.3

10.4

10.5

10.6

CONTENTS ix

Getting user input and current time 266
Your first datetime class 266 = Reading user input 267
Getting current date and time 271

Calculating the difference between two times 272

Modeling a time interval 273 = Implementing a custom
subtraction operator 273 = Time difference algorithm 275
The complete program 280

Overriding operators in the tsunami simulator 282

A refresher on the Field class 283 = Implementing the arithmetic
Jor the Field class 284 » Synchronizing parallel images on
assignment 286

Answer key 288

Exercise 1: Validating user input 288 = Exercise 2: Leap year in
the Gregorian calendar 289 = Exercise 3: Implementing the
addition for the Field type 289

New Fortran elements, at a glance 290

PART 4 ‘THE FINAL SYRETCH .coivivivnisisssivsiinsssinicinsssiin 291

[Interoperability with C: Exposing your app to the web 293

£ L 111

11.2

11.3

11.4
115

Interfacing C: Writing a minimal TCP client and
server 294
Introducing networking to Fortran 295 = Installing libdill 297

TCP server program: Receiving network
connections 297

IP address data structures 299 = Initializing the IP address
structure 301 = Checking IP address values 306 » Intermezzo:
Matching compatible C and Fortran data types 308 = Creating a
socket and listening for connections 310 » Accepting incoming
connections to a socket 311 = Sending a TCP message to the
client 312 = Closing a connection 315

TCP client program: Connecting to a remote server 317

Connecting to a remole socket 317 = Receiving a message 319
The complete client program 321

Some interesting mixed Fortran-C projects 322
Answer key 322

Exercise 1: The Fortran interface lo ipaddr_port 322 » Exercise 2:
Fortran interfaces to suffix_detach and tcp_close 323

&
F

CONTENTS

11.6 New Fortran elements, at a glance 324
11.7 Further reading 324

7 7% Advanced parallelism with teams, events, and collectives 326
4= 12.1 From coarrays to teams, events, and collectives 327
12.2 Grouping images into teams with common tasks 328
Teams in the tsunami simulator 329 = Forming new teams 331
Changing execution between teams 332 = Synchronizing teams
and exchanging data 335
12.3 Posting and waiting for events 338
A push notification example 339 = Posting an event 341
Waiting for an event 341 = Counting event posts 342
12.4 Distributed computing using collectives 343

Computing the minimum and maximum of distributed arrays 343
Collective subroutines syntax 345 = Broadcasting values lo
other images 346

12.5 Answer key 347

Exercise 1: Hunters and gatherers 347 = Exercise 2: Tsunami time
step logging using events 350 = Exercise 3: Calculating the global
mean of water height 351

12.6 New Fortran elements, at a glance 353

12.7 Further reading 353

appendix A Setting up the Fortran development environment 355
appendix B From calculus to code 361
appendix € Concluding remarks 366

index 381

	Inhaltsverzeichnis
	[Seite 1]
	[Seite 2]
	[Seite 3]
	[Seite 4]
	[Seite 5]
	[Seite 6]
	[Seite 7]
	[Seite 8]

