Contents

Pref	ace		xiv
Ack	nowled	gements	xv
Autl	or bioş	graphy	xvi
1	Intro	duction	1-1
1.1			
1.1	What is the purpose of this book, and for whom it is intended		1-1
1.2	Basic equipment: hardware, light sources, lenses, mirrors, windows, filters, cameras etc		1-2
	1.2.1	Standard equipment	1-2
	1.2.2	Common procedures: alignment of components, cleaning optics, spatial filtering a laser beam, calibrating a camera or detector	1-4
	1.2.3	Laser safety	1-8
2	Geor	netrical optics	2-1
2.1		spectrometer and glass dispersion	2-1
2.1		Calibration	2-3
		Spectral resolution	2-3
2.2	Critical angle of reflection and Abbe refractometer: measurement of refractive index of a fluid		2-3
	2.2.1	A classroom demonstration of critical reflection at the air-glass interface	2-3
	2.2.2	The Abbe refractometer	2-3
	2.2.3	Using the refractometer to measure the refractive index of a glass plate	2-5
	2.2.4	A lab experiment	2-5
2.3		ial imaging by singlet lenses: thin lens imaging, on's law, depth of field, Scheimpflug construction	2-6
	2.3.1	Determination of the focal length of a single converging lens	2-7
	2.3.2	The focal length of a thin diverging lens	2-9
	2.3.3	The Scheimpflug construction	2-9
	2.3.4	Commonly encountered problems	2-10
2.4		oound and thick lenses: focal, principal and nodal s, zoom lenses	2-11
	2.4.1	Cardinal points and planes of a compound or thick lens	2-11
	2.4.2	Telephoto combination	2-11
	243	Determining the focal planes and effective focal length	2-11

	2.4.4 Nodal points	2-12
	2.4.5 Telecentric lens combination	2-13
2.5	Telescopes: refractor telescopes, Newton reflector telescope	2-14
	and periscope	
	2.5.1 The concepts of stops and pupils	2-14
	2.5.2 Refractor telescope	2-15
	2.5.3 Field of view	2-17
	2.5.4 Terrestrial telescope	2-17
	2.5.5 Galilean telescope	2-18
	2.5.6 Newtonian reflector telescope	2-18
	2.5.7 Periscope	2-18
	2.5.8 Compound eyepiece	2-20
2.6	Microscopes: transmission, reflection, dark field	2-20
	2.6.1 Construction	2-21
	2.6.2 Magnification	2-22
	2.6.3 Numerical aperture	2-22
	2.6.4 Depth of focus	2-22
	2.6.5 Dark-ground imaging	2-23
	2.6.6 Reflection microscope	2-23
	2.6.7 Polarization and phase microscopy	2-24
2.7	Autocollimator: measuring focal planes of a lens and	2-25
	angle of rotation	
2.8	Aberrations and their reduction: some basic concepts, use of stops	2-26
	2.8.1 Chromatic aberration	2-26
	2.8.2 Spherical aberration	2-27
	2.8.3 Off-axis aberrations	2-27
	2.8.4 Distortion	2-28
2.9	Gravitational lens analogy: an example of an aspherical lens	2-30
	2.9.1 Gravitational lensing	2-30
	2.9.2 Properties of an analogue gravitational lens	2-32
	2.9.3 A laboratory gravitational lens	2-33
	References	2-35
3	Polarization and scattering	3-1
3.1	Polarized light	3-1
	3.1.1 Ordinary and extraordinary light rays in crystals	3-1
	3.1.2 Types of polarized light	3-2

	3.1.3	Creation of polarized light	3-3
	3.1.4	Characterizing the polarizers	3-4
3.2	Fresnel coefficients for reflection at an interface		3-5
	3.2.1	Fresnel coefficients	3-5
	3.2.2	Measuring the Fresnel coefficients	3-6
	3.2.3	Incidence within the medium	3-7
	3.2.4	Using total internal reflection to create circularly-polarized polychromatic light: Fresnel Rhomb	3-8
3.3	Ellips	ometry: using polarized light to measure properties of thin films	3-9
	3.3.1	The basic ellipsometer layout	3-9
	3.3.2	Samples	3-10
	3.3.3	Measurement method	3-10
	3.3.4	Appendix 1: Derivation of the multiple reflection amplitude	3-12
	3.3.5	Appendix 2: Derivation of the null angles	3-13
3.4	Rayle	eigh scattering	3-14
	3.4.1	Scattering of polarized light, photographic applications	3-14
	3.4.2	Wavelength dependence of Rayleigh scattering	3-15
3.5	Cohe	rent back-scattering	3-15
	3.5.1	Localization of light by non-absorbing random materials	3-15
	3.5.2	Experiments	3-16
	Refer	ences	3-18
4	Phys	ical optics I: diffraction and imaging	4-1
4.1	Frau	nhofer (far-field) diffraction and Fourier transforms	4-1
	4.1.1	Optical setup	4-2
	4.1.2	Construction of diffraction objects	4-3
	4.1.3	15 ideas for significant diffraction objects	4-6
	4.1.4	Comparison with calculated Fourier transforms	4-9
4.2	Fresn	el (near-field) diffraction	4-9
	4.2.1	Objects with axial symmetry	4-11
	4.2.2	Linear objects: knife edge and slits	4-13
	4.2.3	Fresnel diffraction by a one-dimensional periodic object: Talbot re-imaging effect	4-13
	4.2.4	Radial star target	4-15
4.3		action gratings: transmission and reflection gratings and roscopy	4-16
	4.3.1	Square wave grating	4-17

	4.3.2 Blazed gratings	4-18
	4.3.3 Spectroscopy	4-18
	4.3.4 Monochromator	4-22
4.4	Imaging with coherent illumination	4-22
	4.4.1 Coherent imaging experimental setups	4-23
	4.4.2 Resolution limit	4-24
	4.4.3 Passive resolution improvement	4-25
	4.4.4 Spatial Filtering in the Fourier plane	4-25
	4.4.5 Demonstrating spatial filtering	4-29
4.5	Optical transfer function: incoherent resolution measurement	ent 4-31
	4.5.1 Measuring the OTF using a resolution target	4-31
	4.5.2 Random target method	4-32
	4.5.3 Using the line and point spread functions	4-33
	4.5.4 An OTF lab bench experiment	4-34
4.6	Diffraction by three-dimensional objects: analogues of crystallography	4-35
	4.6.1 Diffraction by a pair of parallel diffraction gratings banded spectrum	: 4-36
	4.6.2 Carrying out the experiment	4-37
	4.6.3 Interpretation in terms of crystal diffraction theory: the Ewald sphere	4-38
	4.6.4 Interpretation using the Talbot effect	4-39
4.7	High resolution, wide field Fourier ptychographic microscopy	4-40
	References	4-41
5	Physical optics II: interference	5-1
5.1	Newton's rings and flat plate interference	5-1
	5.1.1 Experimental setup	5-1
	5.1.2 Newton's rings	5-2
	5.1.3 Wedge interference	5-3
5.2	Michelson and Twyman–Green interferometer: absolute measurement of wavelength, Fourier spectroscopy and optical testing	
	5.2.1 Michelson's interferometer	5-4
	5.2.2 Fringe types in interferometers	5-8
	5.2.3 Measuring the wavelength	5-9
	5.2.4 White-light fringes and spectroscopy	5-10

	5.2.5	Fourier spectroscopy	5-11
	5.2.6	Optical testing—the Twyman-Green interferometer	5-11
	5.2.7	Interpreting interferograms quantitatively	5-12
5.3	Sagna	c common-path interferometer	5-12
	5.3.1	Aligning the interferometer	5-14
	5.3.2	Sagnac interferometer in a stationary frame of reference	5-14
	5.3.3	Fourier spectroscopy with a Sagnac interferometer	5-15
	5.3.4	Optical testing using the Sagnac interferometer	5-16
5.4	Fabry	Perot étalon	5-16
	5.4.1	Laboratory model	5-17
	5.4.2	Interference pattern	5-18
	5.4.3	Measuring the thickness of the étalon	5-19
	5.4.4	Applications	5-20
5.5	Holog	graphy with a digital camera	5-21
	5.5.1	Experiments	5-23
	5.5.2	Off-line (or side-band) holography	5-23
	5.5.3	Reconstruction algorithm	5-24
	5.5.4	Experimental aims	5-25
	5.5.5	In-line holography	5-27
	5.5.6	Appendix. Derivation of the reconstruction procedure in the Fresnel (small angle) approximation	5-27
5.6	Interf	erometric holography	5-29
	5.6.1	Double exposure holographic interferometry	5-29
	5.6.2	Time exposure holography	5-30
	5.6.3	A comment on holographic interferometry from the point of view of wave-particle duality	5-31
5.7	Comp	outer-generated holography	5-31
	5.7.1	Reconstruction	5-32
	5.7.2	Three-dimensional object	5-32
	Refer	ences	5-33
6	Phys	ical optics III: topics in wave propagation	6-1
6.1	Optic	al tunnelling: frustrated total internal reflection	6-1
	V-00-10-	Theory of optical tunnelling	6-2
		Visualizing tunnelling in a Newton's rings configuration	6-3
		Interpreting the results	6-4
		Direct measurement of the tunnelling probability	6-5

6.2	The acousto-optic effect	6-6
	6.2.1 Experiments in the Raman-Nath regime	6-6
	6.2.2 Experimental suggestions	6-9
6.3	Berry's geometric phase	6-9
	6.3.1 Berry's phase in an optical fibre	6-9
6.4	Spatial coherence function: measurement and interpretation	6-11
	6.4.1 Measuring the spatial coherence function using Young's fringes	6-11
	6.4.2 Measuring the spatial coherence function using a shearing interferometer	6-12
6.5	Aperture synthesis	6-14
	6.5.1 A laboratory aperture synthesis experiment	6-15
6.6	Gouy phase shift through a focus	6-17
	6.6.1 Experimental setup	6-17
	6.6.2 Two questions for investigation	6-18
6.7	Optical vortices	6-18
	6.7.1 Interference patterns	6-20
	6.7.2 Creating vortex waves	6-20
	References	6-22
7	Optics of materials	7-1
7.1	Interferometric measurement of the refractive index of a gas	7-1
7.2	Anisotropic materials: interference figures of uniaxial and biaxial crystals	
	7.2.1 Basic description of birefringent crystals in terms of the refractive index surface	7-2
	7.2.2 Uniaxial and biaxial crystals	7-3
7.3	Chiral materials: optical activity	7-5
7.4	Non-linear optics: second harmonic generation	7-6
	7.4.1 Phase matching	7-6
	7.4.2 The experiment	7-8
7.5	Surface plasmon resonance	7-10
	7.5.1 Observing the plasmons	7-11
	7.5.2 Experiments using the Kretschmann configuration	7-12
	7.5.3 Experiments using the Otto configuration	7-13
7.6	Induced optical anisotropy: photo-elastic, electro-optic and magneto-optic effects	7-14
	7.6.1 Photoelastic effect	7-14

	7.6.2 Electro-optic effect	7-15
	7.6.3 Magneto-optic effect	7-17
	References	7-18
8	Atmospheric optics	8-1
8.1	Rainbow: geometrical and physical optical effects, high-order rainbows	8-1
	8.1.1 The geometrical optical theory of the rainbow	8-1
	8.1.2 Experiments	8-3
8.2	Mirages and gradient-index optics	8-5
	8.2.1 Basic theory of ray paths	8-6
	8.2.2 Laboratory experiments	8-7
	8.2.3 Appendix	8-8
8.3	Green flash	8-9
	8.3.1 Physical origin of the green flash	8-10
	8.3.2 A laboratory experiment	8-10
8.4	Sky polarization, the sunstone and Viking navigation	8-12
	8.4.1 How the Vikings used a birefringent crystal for navigation	8-12
	8.4.2 A Sunstone in the laboratory and the open air	8-13
	References	8-14
9	Relativistic optics	9-1
9.1	Fizeau's experiment: velocity of light in moving water	9-1
9.2	Optical fibre gyroscope: measurement of rate of rotation	9-3
	9.2.1 Sagnac interferometer in a rotating frame of reference: optical gyroscope	9-3
	9.2.2 Fibre-optical gyroscope	9-4
	References	9-5
10	Basic experiments in quantum optics	10-1
10.1	Coincidence experiments	10-1
	2 Measuring the Planck constant	
	Laser modes	10-6
	The spectrum of black-body radiation	10-7
	References	10-9