Table of contents

1	Introd	JUCTIC	ncnc.		
2	Fundamentals of gas combustion				
2					
	2.1		gimes of premixed turbulent combustion		
	2.2	Kn	ocking combustion		
	2	.2.1	Detection and characterization of knocking		
2.2.2		.2.2	Chemistry behind knocking	7	
	2.	.2.3	Influence of engine geometry and operation point parameters on knocking	8	
	2.3	Na	tural gas as fuel	9	
	2	.3.1	Sources	9	
	2.	.3.2	Composition	8	
	2	3.3	Physical properties	§	
	2.	.3.4	Methane Number	10	
	2.	.3.5	Emissions from gas combustion	10	
	2.4	Ор	eration window for large bore natural gas engines	10	
	2.5	Ga	s combustion systems	11	
	2	5.1	Divided combustion chamber (pre-chamber) with external ignition	12	
	2.	5.2	Design features of the pre-chamber	13	
	2.	.5.3	Disadvantages of pre-chamber combustion system	15	
	2.6	Em	ission legislation for gas engines	15	
3	Mode	eling	gas flow, combustion and knocking	17	
	3.1	3-D	CFD modeling of reactive flows	17	
	3.2	3-E	CFD modeling of turbulent flows	19	
	3.	2.1	Modelling laminar burning velocity	21	
	3.	2.2	Modeling turbulent burning velocity	22	
	3.3	Мо	dels for premixed combustion	23	
	3.	3.1	3-D CFD progress variable based models for combustion	23	
	3.	3.2	Combustion models solving reaction chemistry	25	

	3.4	Mod	els for wall function and wall heat transfer	26
	3.5	Mod	els for NO _x formation	26
	3.6	Mod	els for auto-ignition in end-gas	27
	3		Knock integral method	
	3		Using chemical mechanisms in end-gas region	
	3		Knocking models in 3-D CFD simulation	
4	Furti	her de	velopment of simulation tools	31
	4.1			
	4.2		deling gas injection for detailed combustion analysis	
	4.3		scribed heat release combustion model	
	4.4		eraging of heat transfer coefficients	
	4.5		x model	
		4.5.1	Calculation of NO using the extended Zeldovich mechanism	
		4.5.2	Calculation of equilibrium concentrations of combustion products	
		4.5.3	Calculating NO in the CFD solver	
	4.6	Au	to-ignition model in unburnt gas	39
		4.6.1	Validation of detailed chemistry	40
		4.6.2	Calibration of knock integral	42
		4.6.3	Implementation in 3-D CFD model and criterion for knock-onset	43
	5 Ex	perime	ental setup	45
	5.1	1 Er	ngine test bench	45
	5.2	2 0	perating points	47
	5.:	3 M	easurement of component temperatures	48
	5.		ote regarding the measurements	
	5.		ost processing of measurements	
		5.5.1		
		5.5.2		
		5.5.3		
		5.5.4	Detection and characterization of knocking from experiments	5°

	5.	5.5	Selection of representative cycles	52	
6	Valida	ation	of simulation models	55	
	6.1	Val	idation of TPA Model	55	
	6.2	Val	idation of Charge Motion Design (CMD) Process	56	
	6.	2.1	Comparison of pre-chamber variants	56	
	6.2.2		Variation of air-fuel ratio in the main chamber	58	
	6.2.3		Extension of CMD process to second engine	60	
	6.3	Vali	idation of combustion, emission and knock models	61	
	6.	3.1	Gas exchange simulations for the variation of pre-chamber	61	
	6.3.2		Combustion simulations for the variation of pre-chamber	66	
	6.3.3		Variation of air-fuel ratio in the main chamber	74	
	6.	3.4	Variation of pre-chamber gas supply pressure	80	
	6.	3.5	Overall validation of the NO _x model	85	
	6.	3.6	Simulation of high knock points	85	
	6.	3.7	Calculation of component temperatures	89	
	6.4	Sur	nmary, further improvements and outlook	93	
7 Process for development of new engines		or development of new engines	97		
	7.1	Pre	diction burn duration for representative percentile cycles	97	
	7.2	Hea	at release rate curve fitting to burn duration	99	
8	Concl	nclusions10			
9	Appendix				
	9.1 Set		tings of CFD model for CMD process	103	
	9.2	Set	tings of CFD model for detailed fuel injection analysis	104	
	9.3	Set	tings of CFD model for combustion	105	
	9.4	Wal	Il temperatures	105	
	9.5	Add	litional data to engine operating points	106	
	9.6 Mes		sh effects	107	
	9.7	Ass	sumptions of standard wall functions	108	
	9.8	Cal	culation of gas properties	108	

	9.9	Calibrated constants of the CMD process	.110
	9.10	Butterworth Band-pass filter	.111
	9.11	Correlation of knock onset and intensity	.111
	9.12	Definition of KP50 and KP85	.112
	9.13	Calibration of 0-D combustion model	.113
	9.14	Burn delay in pre-chamber	.114
	9.15	Simulation of burn delay at spark plug	.115
	9.16	Knock evaluation at additional points	.116
	9.17	Vibe curve for modeling combustion	.119
	9.18	Example of methodology for new engines	.1 2 0
	9.19	Effect of wall temperature assumption on auto-ignition model	.1 2 2
	9.20	Parameterization of PC geometry	.125
1	0 F	References	. 127