Inhaltsverzeichnis

Inhaltsverzeichnis					
1 Einleitung					
1.1	Ausgangssituation 1				
1.2	Motivation und Zielsetzung3				
1.3	Vorgehensweise3				
2 Grur	ndlagen5				
2.1	Faserverbundwerkstoffe5				
2.1.1	Verstärkungsprinzip5				
2.1.2	Matrix				
2.1.3	Verstärkungsfasern 6				
2.2	Diskontinuierlich verstärkte Kunststoffe				
	/orhersage der mechanischen Eigenschaften faserverstärkter Kunststoffe11				
2.3.1	Steifigkeit				
2.3.2	Festigkeit				
2.4 F	Fasern in Polymerströmungen				
2.4.1	Faserschädigungsmechanismen				
2.4.2	Beschreibung der Faserorientierung				
2.4.3	Existierende Modelle zur Beschreibung der Faserverkürzung 22				
3 Analy	yse der Faserverkürzung im Spritzgießplastifizieraggregat				
3.1 E	Experimenteller Aufbau				
3.1.1	Plastifizierparameter				
3.1.2	Probenherstellung und Probenentnahme28				
3.1.3	Bestimmung der Faserlänge				
3.2 A	Auswertung der Prozesseinflüsse auf die Faserverkürzung				
3.2.1	Kurzfaserverstärkter Kunststoff				
3.2.2	Langfaserverstärkter Kunststoff				
3.3 F	aserverkürzung entlang der Plastifizierschnecke				

				llitative Beschreibung der Faserverkürzungsmechanismen bei der stifizierung von verstärkten Thermoplasten	. 41		
		3.4.	1	Feststoffförderbereich	. 41		
	3.4.2		2	Aufschmelzbereich	42		
		3.4.3		Schmelzeförderbereich	43		
=				größenanalyse auf die Faserschädigung in eindimensionalen ngen	. 44		
	4.	1	Ехр	erimenteller Aufbau	45		
	4.:	2	Einf	lussgrößenanalyse auf die Faserverkürzung	47		
		4.2.	1	Kurzglasfaserverstärkter Kunststoff	47		
	4.2.2		2	Langglasfaserverstärkter Kunststoff	50		
	4.	3	Einf	lussanalyse mittels mathematischer Modellierung	52		
	4.	4	Einf	luss der Wandinteraktionen auf die Faserverkürzung	56		
5		Mod	lellb	asierte Beschreibung der Faserverkürzung	59		
	5.1 Mat 5.1.1 5.1.2		Mat	hematisch-physikalische Modellierung des Faserbruchs	59		
			1	Bestimmung der Modelleingangsgrößen	64		
			2	Modellkorrekturfaktoren für die Faser/Faser-Interaktion	68		
	5.1.3		3	Validierung des Modellansatzes für eindimensionale Strömungen	70		
	5.2	2	Disk	rete Faserbruchmodellierung nach Phelps	72		
6		Fas	erlär	ngenberechnung im Plastifizieraggregat	80		
	6.	1	lmpl	ementierung und Validierung der analytischen Bruchmodellierung	81		
	6.2	2	Impl	ementierung und Validierung des diskreten Faserbruchmodells	87		
	6.3	3	Anw	rendungsbeispiel: Berechnungsbasierte Schneckenauslegung	92		
		6.3.	1	Auslegungsvorschriften	92		
	6.3.2		2	Schneckenkonzept	93		
7		Zus	amm	nenfassung und Ausblick	97		
Li	Literaturverzeichnis III						
A	AbkürzungsverzeichnisXI						
A	AnhangXV						
L	_ebenslaufXVII						