CONTENTS

PREFACE, xi

1 INTRODUCTION, 1

- 1.1 Introduction, 1
- 1.2 Network Flow Problems, 4
- 1.3 Applications, 9
- 1.4 Summary, 18 Reference Notes, 19 Exercises, 20

2 PATHS, TREES, AND CYCLES, 23

- 2.1 Introduction, 23
- 2.2 Notation and Definitions, 24
- 2.3 Network Representations, 31
- 2.4 Network Transformations, 38
- 2.5 Summary, 46 Reference Notes, 47 Exercises, 47

3 ALGORITHM DESIGN AND ANALYSIS, 53

- 3.1 Introduction, 53
- 3.2 Complexity Analysis, 56
- 3.3 Developing Polynomial-Time Algorithms, 66
- 3.4 Search Algorithms, 73
- 3.5 Flow Decomposition Algorithms, 79
- 3.6 Summary, 84 Reference Notes, 85 Exercises, 86

4 SHORTEST PATHS: LABEL-SETTING ALGORITHMS, 93

- 4.1 Introduction, 93
- 4.2 Applications, 97
- 4.3 Tree of Shortest Paths, 106
- 4.4 Shortest Path Problems in Acyclic Networks, 107
- 4.5 Dijkstra's Algorithm, 108
- 4.6 Dial's Implementation, 113
- 4.7 Heap Implementations, 115
- 4.8 Radix Heap Implementation, 116

4.9 Summary, 121 Reference Notes, 122 Exercises, 124

5 SHORTEST PATHS: LABEL-CORRECTING ALGORITHMS, 133

- 5.1 Introduction, 133
- 5.2 Optimality Conditions, 135
- 5.3 Generic Label-Correcting Algorithms, 136
- 5.4 Special Implementations of the Modified Label-Correcting Algorithm, 141
- 5.5 Detecting Negative Cycles, 143
- 5.6 All-Pairs Shortest Path Problem, 144
- 5.7 Minimum Cost-to-Time Ratio Cycle Problem, 150
- 5.8 Summary, 154 Reference Notes, 156 Exercises, 157

6 MAXIMUM FLOWS: BASIC IDEAS, 166

- 6.1 Introduction, 166
- 6.2 Applications, 169
- 6.3 Flows and Cuts, 177
- 6.4 Generic Augmenting Path Algorithm, 180
- 6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem, 184
- 6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem, 188
- 6.7 Flows with Lower Bounds, 191
- 6.8 Summary, 196 Reference Notes, 197 Exercises, 198

7 MAXIMUM FLOWS: POLYNOMIAL ALGORITHMS, 207

- 7.1 Introduction, 207
- 7.2 Distance Labels, 209
- 7.3 Capacity Scaling Algorithm, 210
- 7.4 Shortest Augmenting Path Algorithm, 213
- 7.5 Distance Labels and Layered Networks, 221
- 7.6 Generic Preflow-Push Algorithm, 223
- 7.7 FIFO Preflow-Push Algorithm, 231
- 7.8 Highest-Label Preflow-Push Algorithm, 233
- 7.9 Excess Scaling Algorithm, 237
- 7.10 Summary, 241 Reference Notes, 241 Exercises, 243

8 MAXIMUM FLOWS: ADDITIONAL TOPICS, 250

- 8.1 Introduction, 250
- 8.2 Flows in Unit Capacity Networks, 252
- 8.3 Flows in Bipartite Networks, 255
- 8.4 Flows in Planar Undirected Networks, 260
- 8.5 Dynamic Tree Implementations, 265

- 8.6 Network Connectivity, 273
- 8.7 All-Pairs Minimum Value Cut Problem, 277
- 8.8 Summary, 285
 - Reference Notes, 287 Exercises, 288

9 MINIMUM COST FLOWS: BASIC ALGORITHMS, 294

- 9.1 Introduction, 294
- 9.2 Applications, 298
- 9.3 Optimality Conditions, 306
- 9.4 Minimum Cost Flow Duality, 310
- 9.5 Relating Optimal Flows to Optimal Node Potentials, 315
- 9.6 Cycle-Canceling Algorithm and the Integrality Property, 317
- 9.7 Successive Shortest Path Algorithm, 320
- 9.8 Primal-Dual Algorithm, 324
- 9.9 Out-of-Kilter Algorithm, 326
- 9.10 Relaxation Algorithm, 332
- 9.11 Sensitivity Analysis, 337
- 9.12 Summary, 339 Reference Notes, 341 Exercises, 344

10 MINIMUM COST FLOWS: POLYNOMIAL ALGORITHMS, 357

- 10.1 Introduction, 357
- 10.2 Capacity Scaling Algorithm, 360
- 10.3 Cost Scaling Algorithm, 362
- 10.4 Double Scaling Algorithm, 373
- 10.5 Minimum Mean Cycle-Canceling Algorithm, 376
- 10.6 Repeated Capacity Scaling Algorithm, 382
- 10.7 Enhanced Capacity Scaling Algorithm, 387
- 10.8 Summary, 395 Reference Notes, 396 Exercises, 397

11 MINIMUM COST FLOWS: NETWORK SIMPLEX ALGORITHMS, 402

- 11.1 Introduction, 402
- 11.2 Cycle Free and Spanning Tree Solutions, 405
- 11.3 Maintaining a Spanning Tree Structure, 409
- 11.4 Computing Node Potentials and Flows, 411
- 11.5 Network Simplex Algorithm, 415
- 11.6 Strongly Feasible Spanning Trees, 421
- 11.7 Network Simplex Algorithm for the Shortest Path Problem, 425
- 11.8 Network Simplex Algorithm for the Maximum Flow Problem, 430
- 11.9 Related Network Simplex Algorithms, 433
- 11.10 Sensitivity Analysis, 439
- 11.11 Relationship to Simplex Method, 441
- 11.12 Unimodularity Property, 447
- 11.13 Summary, 450
 - Reference Notes, 451
 - Exercises, 453

12 ASSIGNMENTS AND MATCHINGS, 461

- 12.1 Introduction, 461
- 12.2 Applications, 463
- 12.3 Bipartite Cardinality Matching Problem, 469
- 12.4 Bipartite Weighted Matching Problem, 470
- 12.5 Stable Marriage Problem, 473
- 12.6 Nonbipartite Cardinality Matching Problem, 475
- 12.7 Matchings and Paths, 494
- 12.8 Summary, 498 Reference Notes, 499 Exercises, 501

13 MINIMUM SPANNING TREES, 510

- 13.1 Introduction, 510
- 13.2 Applications, 512
- 13.3 Optimality Conditions, 516
- 13.4 Kruskal's Algorithm, 520
- 13.5 Prim's Algorithm, 523
- 13.6 Sollin's Algorithm, 526
- 13.7 Minimum Spanning Trees and Matroids, 528
- 13.8 Minimum Spanning Trees and Linear Programming, 530
- 13.9 Summary, 533 Reference Notes
 - Reference Notes, 535 Exercises, 536

14 CONVEX COST FLOWS, 543

- 14.1 Introduction, 543
- 14.2 Applications, 546
- 14.3 Transformation to a Minimum Cost Flow Problem, 551
- 14.4 Pseudopolynomial-Time Algorithms, 554
- 14.5 Polynomial-Time Algorithm, 556
- 14.6 Summary, 560 Reference Notes, 561 Exercises, 562

15 GENERALIZED FLOWS, 566

- 15.1 Introduction, 566
- 15.2 Applications, 568
- 15.3 Augmented Forest Structures, 572
- 15.4 Determining Potentials and Flows for an Augmented Forest Structure, 577
- 15.5 Good Augmented Forests and Linear Programming Bases, 582
- 15.6 Generalized Network Simplex Algorithm, 583
- 15.7 Summary, 591
 - Reference Notes, 591 Exercises, 593

16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION, 598

- 16.1 Introduction, 598
- 16.2 Problem Relaxations and Branch and Bound, 602
- 16.3 Lagrangian Relaxation Technique, 605
- 16.4 Lagrangian Relaxation and Linear Programming, 615
- 16.5 Applications of Lagrangian Relaxation, 620
- 16.6 Summary, 635 Reference Notes, 637 Exercises, 638

17 MULTICOMMODITY FLOWS, 649

- 17.1 Introduction, 649
- 17.2 Applications, 653
- 17.3 Optimality Conditions, 657
- 17.4 Lagrangian Relaxation, 660
- 17.5 Column Generation Approach, 665
- 17.6 Dantzig-Wolfe Decomposition, 671
- 17.7 Resource-Directive Decomposition, 674
- 17.8 Basis Partitioning, 678
- 17.9 Summary, 682 Reference Notes, 684 Exercises, 686

18 COMPUTATIONAL TESTING OF ALGORITHMS, 695

- 18.1 Introduction, 695
- 18.2 Representative Operation Counts, 698
- 18.3 Application to Network Simplex Algorithm, 702
- 18.4 Summary, 713 Reference Notes, 713 Exercises, 715

19 ADDITIONAL APPLICATIONS, 717

- 19.1 Introduction, 717
- 19.2 Maximum Weight Closure of a Graph, 719
- 19.3 Data Scaling, 725
- 19.4 Science Applications, 728
- 19.5 Project Management, 732
- 19.6 Dynamic Flows, 737
- 19.7 Arc Routing Problems, 740
- 19.8 Facility Layout and Location, 744
- 19.9 Production and Inventory Planning, 748
- 19.10 Summary, 755
 - Reference Notes, 759
 - Exercises, 760

Contents

APPENDIX A DATA STRUCTURES, 765

- A.1 Introduction, 765
- A.2 Elementary Data Structures, 766
- A.3 d-Heaps, 773
- A.4 Fibonacci Heaps, 779 Reference Notes, 787

APPENDIX B NO-COMPLETENESS, 788

- B.1 Introduction, 788
- B.2 Problem Reductions and Transformations, 790
- B.3 Problem Classes P, NP, NP-Complete, and NP-Hard, 792
- B.4 Proving NP-Completeness Results, 796
- B.5 Concluding Remarks, 800 Reference Notes, 801

APPENDIX C LINEAR PROGRAMMING, 802

- C.1 Introduction, 802
- C.2 Graphical Solution Procedure, 804
- C.3 Basic Feasible Solutions, 805
- C.4 Simplex Method, 810
- C.5 Bounded Variable Simplex Method, 814
- C.6 Linear Programming Duality, 816 Reference Notes, 820

REFERENCES, 821

INDEX, 840