CONTENTS

	Preface First Edition Preface			
1	Fundamental Principles			
	1.1	Reacti	on Mechanisms and Their Importance	1
	1.2	Eleme	ntary (Concerted) and Stepwise Reactions	2
	1.3	Molec	ularity	4
		1.3.1	Unimolecular Reactions	4
		1.3.2	Bimolecular Reactions	5
	1.4	Kineti	cs	6
		1.4.1	Rate-Laws for Elementary (Concerted) Reactions	6
		1.4.2	Reactive Intermediates and the Steady-State Assumption	9
		1.4.3	Rate-Laws for Stepwise Reactions	12
	1.5	Therm	odynamics	13
		1.5.1	Enthalpy, Entropy, and Free Energy	13
		1.5.2	Reversible and Irreversible Reactions	14
		1.5.3	Chemical Equilibrium	15
	1.6	The T	ransition State	17
		1.6.1	The Transition State and Activation Energy	17
		1.6.2	The Hammond Postulate	18
		1.6.3	The Bell–Evans–Polanyi Principle	19
	1.7	Electro	onic Effects and Hammett Equation	20
		1.7.1	Electronic Effects of Substituents	20
		1.7.2	Hammett Equation	21

	1.8	The Molecular Orbital Theory	23
		1.8.1 Formation of Molecular Orbitals from Atomic Orbitals	23
		1.8.2 Molecular Orbital Diagrams	28
		1.8.3 Resonance Stabilization	30
		1.8.4 Frontier Molecular Orbitals	32
	1.9	Electrophiles/Nucleophiles Versus Acids/Bases	33
		1.9.1 Common Electrophiles	34
		1.9.2 Common Nucleophiles	38
	1.10	Isotope Labeling	39
	1.11	Enzymes: Biological Catalysts	43
	1.12	The Green Chemistry Methodology	46
	Proble	ems	49
	Refer	rences	51
2	The A	Aliphatic C–H Bond Functionalization	53
	2.1	Alkyl Radicals: Bonding and Their Relative Stability	54
	2.2	Radical Halogenations of the C-H Bonds on sp ³ -Hybridized	
		Carbons: Mechanism and Nature of the Transition States	59
	2.3	Energetics of the Radical Halogenations of Alkanes and Their	
		Regioselectivity	63
		2.3.1 Energy Profiles for Radical Halogenation Reactions of	
		Alkanes	63
	• •	2.3.2 Regioselectivity for Radical Halogenation Reactions	64
	2.4	Kinetics of Radical Halogenations of Alkanes	68
		2.4.1 Alkanes	68
	2.5	2.4.2 Hydrocarbons Containing an Unsaturated Group	70
	2.5	Radical Initiators	73
		2.5.1 Azobisisobutyonitrile (AIBN)	73
	26	2.5.2 Dibenzol Peroxide	74
	2.6	Transition-Metal-Compounds Catalyzed Alkane C–H Bond	70
		Activation and Functionalization	76
		2.6.1 The C-H Bond Activation via Agostic Bond	76
		2.6.2 Mechanisms for the C-H Bond Oxidative	77
	27	Functionalization	77
	2.7	Superacides Catalyzed Alkane C—H Bond Activation and	00
	20	Functionalization	80
	2.8	Nitration of the Aliphatic C–H Bonds via the Nitronium NO_2^+ Ion	84
	2.9	Photochemical and Thermal C–H Bond Activation by the Ovidative Urapul UO $^{2+}(VI)$ Cation	06
	2 10	Oxidative Uranyl $UO_2^{2+}(VI)$ Cation	86
	2.10	Enzyme Catalyzed Alkane C—H Bond Activation and Functionalization: Biochemical Methods	00
	Drobl		88
	Probl		91
	Refer	rences	- 93

3	Functionalization of the Alkene C=C Bond by Electrophilic					
	Addi	tions		95		
	3.1	Marko	vnikov Additions via Intermediate Carbocations	96		
		3.1.1	Protonation of the Alkene C=C π Bond by Strong Acids			
			to form Carbocations	96		
		3.1.2	Additions of Hydrogen Halides (HCl, HBr, and HI) to			
			Alkenes: Mechanism, Regiochemistry, and			
			Stereochemistry	98		
		3.1.3	Acid and Transition-Metal Catalyzed Hydration of			
			Alkenes and Its Applications	103		
		3.1.4	Acid Catalyzed Additions of Alcohols to Alkenes	108		
		3.1.5	Special Electrophilic Additions of the Alkene C=C Bond:			
			Mechanistic and Synthetic Aspects	109		
		3.1.6	Electrophilic Addition to the $C \equiv C$ Triple Bond via			
			a Vinyl Cation Intermediate	113		
	3.2	Electro	ophilic Addition of Hydrogen Halides to Conjugated Dienes	114		
	3.3	Non-N	Aarkovnikov Radical Addition	116		
	3.4	Hydro	boration: Concerted, Non-Markovnikov syn-Addition	117		
		3.4.1	Diborane (B ₂ H ₆): Structure and Properties	117		
		3.4.2	Concerted, Non-Markovnikov syn-Addition of Borane			
			(BH ₃) to the Alkene C=C Bond: Mechanism,			
			Regiochemistry, and Stereochemistry	118		
		3.4.3	Synthesis of Special Hydroborating Reagents	122		
		3.4.4	Reactions of Alkenes with Special Hydroborating			
			Reagents: Regiochemistry, Stereochemistry, and			
			Their Applications in Chemical Synthesis	123		
	3.5	Transi	tion-Metal Catalyzed Hydrogenation of the Alkene C=C			
			(syn-Addition)	126		
			Mechanism and Stereochemistry	127		
			Synthetic Applications	130		
		3.5.3	Biochemically Related Applications: Hydrogenated	NO223333		
			Fats (Oils)	132		
	3.6	-	enation of the Alkene $C \equiv C$ Bond (Anti-Addition):			
	Mechanism and its Stereochemistry					
	Probl			138		
	Refer	ences		141		
4	Func	tionaliz	ation of the Alkene C=C Bond by Cycloaddition			
	Reac			143		
	4.1	Cyclo	addition of the Alkene C=C Bond to Form			
		•	Membered Rings	144		
			Epoxidation	144		
			Cycloadditions via Carbenes and Related Species	146		
	4.2		additions to Form Four-Membered Rings	150		

	4.3	Diels-A	Alder Cycloadditions of the Alkene C=C Bond to Form	
		Six-Me	embered Rings	153
		4.3.1	Frontier Molecular Orbital Interactions	155
		4.3.2	Substituent Effects	158
		4.3.3	Other Diels-Alder Reactions	160
	4.4	1,3-Dip	polar Cycloadditions of the C=C and Other Multiple	
		Bonds	to Form Five-Membered Rings	167
		4.4.1	Oxidation of Alkenes by Ozone (O ₃) and Osmium	
			Tetraoxide (OsO ₄) via Cycloadditions	167
		4.4.2	Cycloadditions of Nitrogen-Containing 1,3-Dipoles to	
			Alkenes	171
		4.4.3	Cycloadditions of the Dithionitronium (NS_2^+) Ion to	
			Alkenes, Alkynes, and Nitriles: Making CNS-Containing	
			Aromatic Heterocycles	173
	4.5	Other I	Pericyclic Reactions	181
		4.5.1	Conjugated Trienes	181
		4.5.2	The Cope Rearrangement	182
		4.5.3	Conjugate Dienes	184
			The 4π -Cycloaddition Between the N=N Bonds	185
				185
	4.6		Alder Cycloadditions in Water: The Green Chemistry	
		Metho		186
	4.7	Biolog	ical Applications	192
		4.7.1	Photochemical Synthesis of Vitamin D ₂ via a Cyclic	
			Transition State	192
		4.7.2	Ribosome-Catalyzed Peptidyl Transfer via a Cyclic	
			Transition State: Biosynthesis of Proteins	192
	Probl			195
	Refer	ences		197
5	The	Aromati	ic C—H Bond Functionalization and Related Reactions	199
5				1//
	5.1		tic Nitration: All Reaction Intermediates and Full	
			nism for the Aromatic C—H Bond Substitution by	
			ium (NO_2^+) and Related Electrophiles	200
		5.1.1	Charge-Transfer Complex [ArH, NO ₂ ⁺] Between Arene	
			and Nitronium	201
				202
			Arenium $[Ar(H)NO_2]^+$ Ion	202
		5.1.4	Full Mechanism for Aromatic Nitration	203
	5.2		nisms and Synthetic Utility for Aromatic C–H Bond	
	<i>с</i> о		tutions by other Related Electrophiles	204
	5.3		on (III) Catalyzed Electrophilic Aromatic C-H Bond	010
		Substit	lution	212

5.4	The Electrophilic Aromatic C-H Bond Substitution Reactions			
	via S _N 1 and S _N 2 Mechanisms	219		
	5.4.1 Reactions Involving S _N 1 Steps	219		
	5.4.2 Reactions Involving S _N 2 Steps	224		
5.5	Substituent Effects on the Electrophilic Aromatic Substitution			
	Reactions	225		
	5.5.1 Ortho- and para-Directors	227		
	5.5.2 Meta-Directors	229		
5.6	Isomerizations Effected by the Electrophilic Aromatic			
	Substitution Reactions	231		
5.7	Electrophilic Substitution Reactions on the Aromatic			
	Carbon-Metal Bonds: Mechanisms and Synthetic Applications	235		
	5.7.1 Aryl Grignard and Aryllithium Compounds	236		
	5.7.2 Ortho-Metallation-Directing Groups (o-MDGs):			
	Mechanism and Synthetic Applications	237		
5.8	Nucleophilic Aromatic Substitution via a Benzyne (Aryne)			
	Intermediate: Functional Group Transformations on Aromatic			
	Rings	239		
5.9	Nucleophilic Aromatic Substitution via an Anionic			
	Meisenheimer Complex	243		
5.10	Biological Applications of Functionalized Aromatic Compounds	247		
Proble	ems	251		
Refer	ences	254		

6 Nucleophilic Substitutions on sp³-Hybridized Carbons: Functional **Group Transformations** 257 Nucleophilic Substitution on Mono-Functionalized sp³-6.1 Hybridized Carbon 257 Functional Groups which are Good and Poor Leaving Groups 259 6.2 Good and Poor Nucleophiles 6.3 261 S. 2 Reactions: Kinetics Mechanism and Stereochemistry 61 263

0.4	SNZ R	eactions: Kinetics, Mechanism, and Stereochemistry	203		
	6.4.1	Mechanism and Stereochemistry for S _N 2 Reactions	263		
	6.4.2	Steric Hindrance on S _N 2 Reactions	266		
	6.4.3	Effect of Nucleophiles	269		
	6.4.4	Solvent Effect	271		
	6.4.5	Effect of Unsaturated Groups Attached to the			
		Functionalized Electrophilic Carbon	272		
6.5	Analysis of the S _N 2 Mechanism Using Symmetry Rules and				
	Molecular Orbital Theory				
	6.5.1	The S _N 2 Reactions of Methyl and Primary Haloalkanes			
		RCH_2X (X = Cl, Br, or I; R = H or an Alkyl Group)	273		
	6.5.2	Reactivity of Dichloromethane CH ₂ Cl ₂	276		

	6.6	S _N 1 Reactions: Kinetics, Mechanism, and Product Development	278
		6.6.1 The S_N 1 Mechanism and Rate Law	278
		6.6.2 Solvent Effect	280
		6.6.3 Effects of Carbocation Stability and Quality of Leaving	
		Group on the $S_N 1$ Rates	280
		6.6.4 Product Development for S _N 1 Reactions	284
	6.7	Competitions Between S_N1 and S_N2 Reactions	286
	6.8	Some Useful S_N1 and S_N2 Reactions: Mechanisms and Synthetic	
		Perspectives	290
		6.8.1 Nucleophilic Substitution Reactions Effected by Carbon	
		Nucleophiles	291
		6.8.2 Synthesis of Primary Amines	295
		6.8.3 Synthetic Utility of Triphenylphosphine: A Strong	
		Phosphorus Nucleophile	296
		6.8.4 Neighboring Group-Assisted S _N 1 Reactions	297
		6.8.5 Nucleophilic Substitution Reactions of Alcohols Catalyzed	
		by Solid Bronsted Acids: A Green Chemistry Approach	301
	6.9	Biological Applications of Nucleophilic Substitution Reactions	303
		6.9.1 Biomedical Applications	303
		6.9.2 Glycoside Hydrolases: Enzymes Catalyzing Hydrolytic	
		Cleavage of the Glycosidic Bonds by the S _N 2-Like	
		Reactions	304
		6.9.3 Biosynthesis Involving Nucleophilic Substitution	
		Reactions	309
		6.9.4 An Enzyme-Catalyzed Nucleophilic Substitution of an	
		Haloalkane	310
	Proble		312
	Refer	ences	314
7	Elimi	inations	317
	7.1	E2 Elimination: Bimolecular β -Elimination of H/LG and its	
		•	318
			318
		÷ •	322
			325
	7.2	Analysis of the E2 Mechanism Using Symmetry Rules and	
			326
		•	326
		7.2.2 Halocyclohexane	327
		•	331
	7.3	-	332
	7.4		334

	7.5	E1 Elin	nination: Stepwise β -Elimination of H/LG via an	
		Interme	ediate Carbocation and its Rate-Law	336
		7.5.1	Mechanism and Rate Law	336
		7.5.2	E1 Dehydration of Alcohols	338
	7.6	Energy	Profiles for E1 Reactions	339
		7.6.1	The Bell–Evans–Polanyi Principle	339
		7.6.2	The E1 Dehydration of Alcohols (ROH)	340
		7.6.3	The E1 Dehydrohalogenation of Haloalkanes	
			(RX, X = Cl, Br, or I)	342
	7.7	The E1	Elimination of Ethers	344
	7.8	Intramo	olecular (Unimolecular) Eliminations via Cyclic	
			ion States	345
		7.8.1	Concerted, syn-Elimination of Esters	345
		7.8.2	Selenoxide Elimination	347
		7.8.3	Silyloxide Elimination	347
		7.8.4	Unimolecular β-Elimination of Hydrogen Halide from	
			Haloalkanes	348
	7.9	Mechan	nisms for Reductive Elimination of LG ¹ /LG ² (Two	
			onal Groups) on Adjacent Carbons	349
	7.10		Elimination Giving a Carbene: A Mechanistic Analysis	
		Using S	Symmetry Rules and Molecular Orbital Theory	353
		7.10.1	The Bimolecular α -Elimination of Trichloromethane	
			(CHCl ₃) Giving Dichlorocarbene (CCl ₂)	353
		7.10.2		
			of a Haloalkane and the Subsequent Rearrangement to a	ın
			Alkene via a C-H (C-D) Bond Elimination	356
	7.11	E1cb E	limination	356
	7.12	Biologi	cal Applications: Enzyme-Catalyzed Biological	
		Elimina	ation Reactions	358
		7.12.1	The Enzyme-Catalyzed β-Oxidation of Fatty Acyl	
			Coenzyme A	358
		7.12.2	Elimination Reactions Involved in Biosynthesis	360
	Probl	ems		362
	Refer	ences		364
0	Nucl		Additions and Sabattations on Conhand Course	2(7
8	Nucle	eophilic	Additions and Substitutions on Carbonyl Groups	367
	8.1	Carlo a serie a	philic Additions and Substitutions of Carbonyl	
		Compo		367
	8.2		philic Additions of Aldehydes and Ketones and Their	
		-	cal Applications	370
		8.2.1	Acid and Base Catalyzed Hydration of Aldehydes and	7775 641 10000
			Ketones	370

		8.2.2	Acid Catalyzed Nucleophilic Additions of Alcohols to	
			Aldehydes and Ketones	373
		8.2.3	Biological Applications: Cyclic Structures of	
			Carbohydrates	376
		8.2.4	Addition of Sulfur Nucleophile to Aldehydes	379
		8.2.5	Nucleophilic Addition of Amines to Ketones and	
			Aldehydes	381
		8.2.6	Nucleophilic Additions of Hydride Donors to Aldehydes	201
	0.0	D ' 1	and Ketones: Organic Reductions and Mechanisms	384
	8.3	-	gical Hydride Donors NAD(P)H and FADH ₂	386
	8.4		ation of Carboxylic Acids via Nucleophilic Substitutions	200
			Carbonyl Carbons	390
		8.4.1	Reactions of Carboxylic Acids with Thionyl Chloride	390
		8.4.2	Esterification Reactions, Synthetic Applications, and	201
		0 4 2	Green Chemistry Methods	391
		8.4.3	Formation of Anhydrides	396
	0.5	8.4.4	Nucleophilic Addition with Alkyllithium	396
	8.5		ophilic Substitutions of Acyl Derivatives and Their	200
			gical Applications	398
		8.5.1	Nucleophilic Substitutions of Acyl Chlorides and	398
		852	Anhydrides Hydrolysis and Other Nucleophilic Substitutions of	390
		8.5.2	Esters	400
		8.5.3		400
		8.5.5 8.5.4	Biodiesel Synthesis and Reaction Mechanism Biological Applications: Mechanisms of Serine-Type	401
		0.3.4	Hydrolases	403
	8.6	Peduc	tion of Acyl Derivatives by Hydride Donors	409
	8.0 8.7		cs of the Nucleophilic Addition and Substitution of	402
	0.7		Derivatives	410
	Probl	-	Jenvauves	413
		ences		416
	Refer	ences		110
9	Reac	tivity o	f the α-Hydrogen to Carbonyl Groups	417
	9.1	Forma	ation of Enolates and Their Nucleophilicity	417
		9.1.1	Formation of Enolates	417
		9.1.2	Molecular Orbitals and Nucleophilicity of Enolates	421
	9.2	Alkyla	ation of Carbonyl Compounds (Aldehydes, Ketones,	
		and E	sters) via Enolates and Hydrazones	423
		9.2.1	Alkylation via Enolates	423
		9.2.2	Alkylation via Hydrazones and Enamines	425
	9.3	Aldol	Reactions	427
		9.3.1	Mechanism and Synthetic Utility	427
		9.3.2	Stereoselectivity	435

		9.3.3	Other Synthetic Applications	439
	9.4		on Reactions of Esters via Enolates: Mechanism	
		and Syr	nthetic Utility	444
	9.5	Biologi	cal Applications: Roles of Enolates in Metabolic	
		1 C	es in Living Organisms	448
		9.5.1	The Citric Acid Cycle and Mechanism for Citrate	
			Synthase	449
		9.5.2	Ketogenesis and Thiolase	451
	Proble	ems		452
	Refer	ences		455
10	Rear	rangeme	ents	457
	10.1	Major 7	Types of Rearrangements	457
	10.2		agement of Carbocations: 1,2-Shift	458
		10.2.1		
			Molecules	459
		10.2.2	1,2-Shifts in Carbocations Produced from Cyclic	
			Molecules—Ring Expansion	461
		10.2.3	Resonance Stabilization of Carbocation-Pinacol	
			Rearrangement	463
		10.2.4	In vivo Cascade Carbocation Rearrangements: Biological	l
			Significance	464
		10.2.5	Acid Catalyzed 1,2-Shift in Epoxides	466
		10.2.6	Anion Initiated 1,2-Shift	466
	10.3	Neighb	oring Leaving Group Facilitated 1,2-Rearrangement	468
		10.3.1	Beckmann Rearrangement	468
		10.3.2	Hofmann Rearrangement	470
			Baeyer-Villiger Oxidation (Rearrangement)	471
			Acid Catalyzed Rearrangement of Organic Peroxides	475
	10.4		e Rearrangement: 1,2-Rearrangement of Hydrogen	
		Facilita	ted by a Lone Pair of Electrons	476
	10.5		Rearrangement	479
	10.6		Rearrangement in Water: The Green Chemistry Methods	480
	10.7		hemical Isomerization of Alkenes and its Biological	
		Applica		483
		10.7.1	Photochemical Isomerization	484
			Biological Relevance	485
	10.8		ngement of Carbon–Nitrogen–Sulfur Containing	
		Heteroo	cycles	486
	Probl			489
	Refer	rences		491