Contents

Acknowledgments	xxxiii
Preface	xxxv

Part I Topologies

1	Bas	ic Top	ologies		3
	1.1	Introd	luction t	o Linear Regulators and Switching	
		Regul	ators of	the Buck Boost and Inverting Types	3
	1.2	Linea	r Regula	tor—the Dissipative Regulator	4
		1.2.1	Basic O	peration	4
		1.2.2	Some L	imitations of the Linear Regulator	6
		1.2.3	Power l	Dissipation in the Series-Pass Transistor	6
		1.2.4	Linear I	Regulator Efficiency vs. Output Voltage	7
		1.2.5	Linear I	Regulators with PNP Series-Pass	
			Transis	tors for Reduced Dissipation	9
	1.3	Switcl	hing Reg	ulator Topologies	10
		1.3.1	The Buo	ck Switching Regulator	10
			1.3.1.1	Basic Elements and Waveforms of a	
				Typical Buck Regulator	11
				Buck Regulator Basic Operation	13
		1.3.2		Waveforms in the Buck Regulator	14
		1.3.3		egulator Efficiency	15
			1.3.3.1	Calculating Conduction Loss and	
				Conduction-Related Efficiency	16
		1.3.4		egulator Efficiency Including	
				itching Losses	16
		1.3.5		g the Optimum Switching Frequency	20
		1.3.6	Design	Examples	21
			1.3.6.1	0 1	
				(Choke) Design	21
			1.3.6.2	0 0	
				Continuous Mode Operation	25
			1.3.6.3	Inductor (Choke) Design	26

viii Switching Power Supply Design

		1.3.7	Output Capacitor	27
		1.3.8	Obtaining Isolated Semi-Regulated Outputs	
			from a Buck Regulator	30
	1.4	The B	Boost Switching Regulator Topology	31
		1.4.1	Basic Operation	31
		1.4.2	The Discontinuous Mode Action	
			in the Boost Regulator	33
		1.4.3	The Continuous Mode Action in the	
			Boost Regulator	35
		1.4.4	Designing to Ensure Discontinuous Operation	
			in the Boost Regulator	37
		1.4.5	The Link Between the Boost Regulator and	
			the Flyback Converter	40
	1.5	The F	Polarity Inverting Boost Regulator	40
		1.5.1	Basic Operation	40
		1.5.2	Design Relations in the Polarity Inverting	
			Boost Regulator	42
	Ref	erences	3	43
2	P116	h-Pul	l and Forward Converter Topologies	45
~	2.1		duction	45
	2.2		Push-Pull Topology	45
	2.2	2.2.1	Basic Operation (With Master/Slave Outputs)	45
		2.2.2	Slave Line-Load Regulation	48
		2.2.3	Slave Output Voltage Tolerance	49
		2.2.4	Master Output Inductor Minimum	17
		2 . 6 . 1	Current Limitations	49
		2.2.5	Flux Imbalance in the Push-Pull Topology	
		2.2.0	(Staircase Saturation Effects)	50
		2.2.6	Indications of Flux Imbalance	52
		2.2.7	Testing for Flux Imbalance	55
		2.2.8	Coping with Flux Imbalance	56
			2.2.8.1 Gapping the Core	56
			2.2.8.2 Adding Primary Resistance	57
			2.2.8.3 Matching Power Transistors	57
			2.2.8.4 Using MOSFET Power Transistors	58
			2.2.8.5 Using Current-Mode Topology	58
		2.2.9	Power Transformer Design Relationships	59
			2.2.9.1 Core Selection	59
			2.2.9.2 Maximum Power Transistor On-Time	
			Selection	60
			2.2.9.3 Primary Turns Selection	61
			2.2.9.4 Maximum Flux Change (Flux Density	
			Swing) Selection	61
			2.2.9.5 Secondary Turns Selection	63

	2.2.10	Primary, Secondary Peak and rms Currents 2.2.10.1 Primary Peak Current Calculation	63 63
		2.2.10.2 Primary rms Current Calculation	00
		and Wire Size Selection	64
		2.2.10.3 Secondary Peak, rms Current,	01
		and Wire Size Calculation	65
		2.2.10.4 Primary rms Current, and Wire	00
		Size Calculation	66
	2211	Transistor Voltage Stress and Leakage	00
	4.4.11	Inductance Spikes	67
	2212	Power Transistor Losses	69
	4	2.2.12.1 AC Switching or Current-Voltage	07
		"Overlap" Losses	69
		2.2.12.2 Transistor Conduction Losses	70
		2.2.12.3 Typical Losses: 150-W, 50-kHz	,,,
		Push-Pull Converter	71
	2.2.13	Output Power and Input Voltage Limitations	•
		in the Push-Pull Topology	71
	2.2.14	Output Filter Design Relations	73
		2.2.14.1 Output Inductor Design	73
		2.2.14.2 Output Capacitor Design	74
2.3	Forwa	ard Converter Topology	75
	2.3.1	Basic Operation	75
	2.3.2	Design Relations: Output/Input Voltage,	
		"On" Time, Turns Ratios	78
	2.3.3	Slave Output Voltages	80
	2.3.4	Secondary Load, Free-Wheeling Diode,	
		and Inductor Currents	81
	2.3.5	Relations Between Primary Current,	
		Output Power, and Input Voltage	81
	2.3.6	Maximum Off-Voltage Stress	
		in Power Transistor	82
	2.3.7	Practical Input Voltage/Output Power Limits	83
	2.3.8	Forward Converter With Unequal Power	
		and Reset Winding Turns	84
	2.3.9	Forward Converter Magnetics	86
		2.3.9.1 First-Quadrant Operation Only	86
		2.3.9.2 Core Gapping in a Forward	
		Converter	88
		2.3.9.3 Magnetizing Inductance with	_
		Gapped Core	89
	2.3.10	Power Transformer Design Relations	90
		2.3.10.1 Core Selection	90
		2.3.10.2 Primary Turns Calculation	90
		2.3.10.3 Secondary Turns Calculation	91

X Switching Power Supply Design

3

		2.3.10.4	Primary rms Current and Wire	
			Size Selection	91
		2.3.10.5	Secondary rms Current and Wire	
			Size Selection	92
		2.3.10.6	Reset Winding rms Current and Wire	
			Size Selection	92
	2.3.11	Output	Filter Design Relations	93
			Output Inductor Design	93
			Output Capacitor Design	94
2.4	Doub	le-Endec	Forward Converter Topology	94
	2.4.1		peration	94
		2.4.1.1	•	96
	2.4.2	Design	Relations and Transformer Design	97
			Core Selection—Primary Turns	
			and Wire Size	97
		2.4.2.2		98
			Output Filter Design	98
2.5	Interl		prward Converter Topology	98
	2.5.1		peration—Merits, Drawbacks,	
			tput Power Limits	98
	2.5.2		rmer Design Relations	100
		2.5.2.1	-	100
		2.5.2.2		100
		2.5.2.3	5	101
	2.5.3		Filter Design	101
			Output Inductor Design	101
			Output Capacitor Design	101
Refe	erence			101
IIal	الد معر	E.11 D.	rides Converter Tanalagies	102
			ridge Converter Topologies	103
3.1				103
3.2			onverter Topology	103
	3.2.1		peration	103
	3.2.2		ridge Magnetics	105
		3.2.2.1	Selecting Maximum "On" Time,	
			Magnetic Core, and Primary Turns	105
		3.2.2.2	The Relation Between Input Voltage,	
			Primary Current, and Output Power	106
		3.2.2.3	Primary Wire Size Selection	106
		3.2.2.4	Secondary Turns and Wire Size	
			Selection	107
	3.2.3		Filter Calculations	107
	3.2.4		ng Capacitor to Avoid Flux Imbalance	107
	3.2.5	Half-Bi	ridge Leakage Inductance Problems	109

		3.2.6	Double-Ended Forward Converter vs.	
			Half Bridge	109
		3.2.7	Practical Output Power Limits	
			in Half Bridge	111
	3.3	Full-I	Bridge Converter Topology	111
		3.3.1	Basic Operation	111
		3.3.2	Full-Bridge Magnetics	113
			3.3.2.1 Maximum "On" Time, Core,	
			and Primary Turns Selection	113
			3.3.2.2 Relation Between Input Voltage,	
			Primary Current, and Output Power	114
			3.3.2.3 Primary Wire Size Selection	114
			3.3.2.4 Secondary Turns and Wire Size	114
		3.3.3	Output Filter Calculations	115
		3.3.4	Transformer Primary Blocking Capacitor	115
4	Flv	back (Converter Topologies	117
	4.1		duction	120
	4.2		Flyback Converter Schematic	121
	4.3		ating Modes	121
	4.4		ontinuous-Mode Operation	123
		4.4.1	Relationship Between Output Voltage,	
			Input Voltage, "On" Time, and Output Load	124
		4.4.2	Discontinuous-Mode to Continuous-Mode	
			Transition	124
		4.4.3	Continuous-Mode Flyback—Basic Operation	127
	4.5		n Relations and Sequential Design Steps	130
		4.5.1	Step 1: Establish the Primary/Secondary	
			Turns Ratio	130
		4.5.2	Step 2: Ensure the Core Does Not Saturate	
			and the Mode Remains Discontinuous	130
		4.5.3	Step 3: Adjust the Primary Inductance	
			Versus Minimum Output Resistance	
			and DC Input Voltage	131
		4.5.4	Step 4: Check Transistor Peak Current	
			and Maximum Voltage Stress	131
		4.5.5	Step 5: Check Primary RMS Current	
			and Establish Wire Size	132
		4.5.6	Step 6: Check Secondary RMS Current	
			and Select Wire Size	132
	4.6		n Example for a Discontinuous-Mode	
		Flyba	ck Converter	132
		4.6.1	Flyback Magnetics	135
		4.6.2	Gapping Ferrite Cores to Avoid Saturation	137

XII Switching Power Supply Design

		4.6.3	Using P	owdered Permalloy (MPP) Cores	
			to Avoid	l Saturation	138
		4.6.4	Flyback	Disadvantages	145
			4.6.4.1	Large Output Voltage Spikes	145
			4.6.4.2	Large Output Filter Capacitor and	
				High Ripple Current Requirement	146
	4.7	Unive	ersal Inpu	It Flybacks for 120-V AC Through	
	117			ration	147
	4.8			ns—Continuous-Mode Flybacks	149
	1.0	4.8.1		ation Between Output Voltage	
		1.0.1		n" Time	149
		4.8.2		Output Current–Power Relations	150
		4.8.3		implitudes for Continuous Mode	100
		1.0.0		num DC Input	152
		4.8.4		inuous- and Continuous-Mode Flyback	104
		1.0.1		Example	153
	4.9	Interl		/backs	155
	1.2	4.9.1		tion of Secondary Currents	
		11		leaved Flybacks	156
	4 10	Doub		(Two Transistor)	100
	1,10			-Mode Flyback	157
				Application	157
				peration	157
				Inductance Effect in	107
		112010		Ended Flyback	159
	Refe	erences			160
5	Cu	rent-N	Mode an	d Current-Fed Topologies	161
	5. 1		duction	- ~	161
		5.1.1	Current	-Mode Control	161
		5.1.2	Current	-Fed Topology	162
	5.2	Curre	ent-Mode		162
		5.2.1	Current	-Mode Control Advantages	163
			5.2.1.1	Avoidance of Flux Imbalance	
				in Push-Pull Converters	163
			5.2.1.2	Fast Correction Against Line Voltage	
				Changes Without Error Amplifier Delay	
				(Voltage Feed-Forward)	163
			5.2.1.3	Ease and Simplicity of Feedback-Loop	
				Stabilization	164
			5.2.1.4	Paralleling Outputs	164
			5.2.1.5	Improved Load Current Regulation	164
	5.3	Curre	ent-Mode	vs. Voltage-Mode Control Circuits	165
		5.3.1		-Mode Control Circuitry	165
		5.3.2		-Mode Control Circuitry	16 9

5.4	Detail	ed Expla	anation of Current-Mode Advantages	171
	5.4.1	Line Vo	ltage Regulation	171
	5.4.2		ation of Flux Imbalance	172
	5.4.3		ied Loop Stabilization from Elimination	
			out Inductor in Small-Signal Analysis	172
	5.4.4		urrent Regulation	174
5.5			Deficiencies and Limitations	176
0.0	5.5.1		nt Peak Current vs. Average Output	
	0.0.1		t Ratio Problem	176
	5.5.2		se to an Output Inductor Current	1.0
	0.0.2	Disturb	-	179
	5.5.3		Compensation to Correct Problems	
	0.0.0		ent Mode	179
	5.5.4		Ramp) Compensation with	
	01011		ve-Going Ramp Voltage	181
	5.5.5		nenting Slope Compensation	182
5.6			e Properties of Voltage-Fed	10-
0.0			Ved Topologies	183
	5.6.1		action and Definitions	183
	5.6.2		ncies of Voltage-Fed, Pulse-	100
	0.0.2		Modulated Full-Wave Bridge	184
		5.6.2.1	-	104
		0.0.2.1	Pulse-Width-Modulated Full-Wave	
			Bridge	185
		5.6.2.2	Turn "On" Transient Problems in	100
		0.0.2.2	Voltage-Fed, Pulse-Width-Modulated	
			Full-Wave Bridge	186
		5.6.2.3	Turn "Off" Transient Problems in	100
		5.0.2.5	Voltage-Fed, Pulse-Width-Modulated	
			Full-Wave Bridge	187
		5.6.2.4	Flux-Imbalance Problem in	107
		3.0.2.4	Voltage-Fed, Pulse-Width-Modulated	
			Full-Wave Bridge	188
	5.6.3	Buck W	pltage-Fed Full-Wave Bridge	100
	5.6.5		gy—Basic Operation	188
	5.6.4		bltage-Fed Full-Wave Bridge	100
	5.0.4	Advant	e e	190
		5.6.4.1	•	190
		5.6.4.1		190
		5.0.4.2	Elimination of Bridge Transistor Turn "On" Transients	191
		E (1 2		191
		5.6.4.3	Decrease of Bridge Transistor Turn	100
		= <i>C</i> A A	"Off" Dissipation	192
		5.6.4.4	Flux-Imbalance Problem in Bridge	100
			Transformer	192

5.6.5	Drawba	cks in Buck Voltage-Fed	
		ve Bridge	193
5.6.6	Buck Cu	arrent-Fed Full-Wave Bridge	
		y-Basic Operation	193
	5.6.6.1	Alleviation of Turn "On"-Turn "Off"	
		Transient Problems in Buck Current-Fed	
		Bridge	195
	5.6.6.2	Absence of Simultaneous Conduction	
		Problem in the Buck	
		Current-Fed Bridge	198
	5.6.6.3	Turn "On" Problems in Buck Transistor	
		of Buck Current- or Buck	
		Voltage-Fed Bridge	198
	5.6.6.4	Buck Transistor Turn "On" Snubber—	
	0.01011	Basic Operation	201
	5.6.6.5	Selection of Buck Turn "On" Snubber	
	0.0.0.0	Components	202
	5.6.6.6	Dissipation in Buck Transistor Snubber	-0-
	0.0.0.0	Resistor	203
	5.6.6.7	Snubbing Inductor Charging Time	203
	5.6.6.8	Lossless Turn "On" Snubber for Buck	200
	0.0.0.0	Transistor	204
	5.6.6.9	Design Decisions in Buck Current-Fed	201
	5.0.0.7	Bridge	205
	56610	Operating Frequencies—Buck and Bridge	200
	0.0.0.10	Transistors	206
	56611	Buck Current-Fed Push-Pull	200
	0.0.0.11	Topology	206
5.6.7	Flyback	Current-Fed Push-Pull Topology	200
0.0.7		erg Circuit)	208
	5.6.7.1	Absence of Flux-Imbalance Problem	200
	0.0.7.1	in Flyback Current-Fed Push-Pull	
		Topology	210
	5.6.7.2	Decreased Push-Pull Transistor Current	210
	0.0.7.2	in Flyback Current-Fed Topology	211
	5.6.7.3	Non-Overlapping Mode in Flyback	211
	0.0.7.0	Current-Fed Push-Pull Topology—	
		Basic Operation	212
	5.6.7.4	Output Voltage vs. "On" Time	212
	0.0.7.4	in Non-Overlapping Mode of Flyback	
		Current-Fed Push-Pull Topology	213
	5.6.7.5	Output Voltage Ripple and Input Current	213
	0.0.7.0	Ripple in Non-Overlapping Mode	214
	5.6.7.6	Output Stage and Transformer Design	61 4
	0.0.7.0	Example—Non-Overlapping Mode	215
		Evaluation - Mon-Overlapping mode	41 J

		5.6.7.7	Flyback Transformer for Design Example	
			of Section 5.6.7.6	218
		5.6.7.8	Overlapping Mode in Flyback Current-Fed	
			Push-Pull Topology—Basic Operation	219
		5.6.7.9	Output/Input Voltages vs. "On" Time	
			in Overlapping Mode	221
		5.6.7.10	Turns Ratio Selection in	
			Overlapping Mode	222
		5.6.7.11	Output/Input Voltages vs. "On" Time	
			for Overlap-Mode Design at High DC	
			Input Voltages, with Forced	
			Non-Overlap Operation	223
		5.6.7.12	Design Example—Overlap Mode	224
			Voltages, Currents, and Wire Size	
			Selection for Overlap Mode	226
Refe	erences		1	227
N.C.	11	T-		220
			pologies	229
6.1			TopologiesIntroduction	229
6.2			R Basics	231
6.3			" by Resonant Sinusoidal Anode	
	Curre	ntSing	le-Ended Resonant Inverter Topology	235
6.4	SCR F		Bridge Topologies—Introduction	240
	6.4.1	Series-L	.oaded SCR Half-Bridge Resonant	
			ter—Basic Operation	241
	6.4.2	Design	Calculations—Series-Loaded SCR	
		Half-Br	idge Resonant Converter	245
	6.4.3	Design	Example—Series-Loaded SCR	
			idge Resonant Converter	247
	6.4.4	Shunt-L	loaded SCR Half-Bridge Resonant	
		Conver	ter	248
	6.4.5	Single-E	Ended SCR Resonant Converter	
		Topolog	gy Design	249
		6.4.5.1	Minimum Trigger Period Selection	251
		6.4.5.2	Peak SCR Current Choice and LC	
			Component Selection	252
		6.4.5.3	Design Example	253
6.5	Cuk C	Converter		254
	6.5.1	Cuk Co	r Topology—Introductionnverter—Basic Operation	255
	6.5.2	Relation	n Between Output and Input Voltages,	
			"On" Time	256
	6.5.3		f Change of Current in <i>L</i> 1, <i>L</i> 2	257
	6.5.4		ng Input Ripple Currents to Zero	258
	6.5.5		l Outputs in the Cuk Converter	259
			· · · · · · · · · · · · · · · · · · ·	

6

XVI Switching Power Supply Design

6.6	Low C	Output P	ower "Housekeeping" or "Auxiliary"			
	Topole	ogies—I	ntroduction	260		
	6.6.1	Housek	Housekeeping Power Supply—on Output or			
			Common?	261		
	6.6.2		eeping Supply Alternatives	262		
	6.6.3	Specific	Housekeeping Supply			
			Diagrams	262		
		6.6.3.1	Housekeeping Supply for AC			
			Prime Power	262		
		6.6.3.2	Oscillator-Type Housekeeping Supply			
			for AC Prime Power	264		
		6.6.3.3				
			for DC Prime Power	265		
	6.6.4	Royer (Royer Oscillator Housekeeping Supply—			
		Basic O	peration	266		
		6.6.4.1	Royer Oscillator Drawbacks	268		
		6.6.4.2	Current-Fed Royer Oscillator	271		
		6.6.4.3	-			
			Converter	271		
		6.6.4.4	Square Hysteresis Loop Materials			
			for Royer Oscillators	274		
		6.6.4.5	Future Potential for Current-Fed Royer			
			and Buck Preregulated Current-Fed			
			Royer	277		
	6.6.5	Minim	um-Parts-Count Flyback as			
		Housel	keeping Supply	278		
	6.6.6	Buck R	egulator with DC-Isolated Output as			
		a Hous	ekeeping Supply	280		
Ref	erences			280		

Part II Magnetics and Circuit Design

7	Tra	nsformers and Magnetic Design	285
	7.1	Introduction	285
	7.2	Transformer Core Materials and Geometries and Peak	
		Flux Density Selection	2 86
		7.2.1 Ferrite Core Losses versus Frequency and	
		Flux Density for Widely Used Core Materials	286
		7.2.2 Ferrite Core Geometries	289
		7.2.3 Peak Flux Density Selection	294
	7.3	Maximum Core Output Power, Peak Flux Density, Core	
		and Bobbin Areas, and Coil Currency Density	295
		7.3.1 Derivation of Output Power Relations	
		for Converter Topology	295

	7.3.2	Derivation of Output Power Relations	
		for Push-Pull Topology	299
		7.3.2.1 Core and Copper Losses in Push-Pull,	
		Forward Converter Topologies	301
		7.3.2.2 Doubling Output Power from a Given	
		Core Without Resorting to a Push-Pull	
		Topology	302
	7.3.3	Derivation of Output Power Relations	002
	7.0.0	for Half Bridge Topology	304
	7.3.4	Output Power Relations in Full Bridge	504
	7.5.4	Topology	306
	7.3.5	Conversion of Output Power Equations into	500
	7.3.5	Charts Permitting Core and Operating	
			306
		Frequency Selection at a Glance	300
		7.3.5.1 Peak Flux Density Selection at Higher	214
		Frequencies	314
7.4		former Temperature Rise Calculations	315
7.5		former Copper Losses	320
	7.5.1	Introduction	320
	7.5.2	Skin Effect	321
	7.5.3	Skin Effect—Quantitative Relations	323
	7.5.4	AC/DC Resistance Ratio for Various Wire Sizes	
		at Various Frequencies	324
	7.5.5	Skin Effect with Rectangular Current	
		Waveshapes	327
	7.5.6	Proximity Effect	328
		7.5.6.1 Mechanism of Proximity Effect	328
		7.5.6.2 Proximity Effect Between Adjacent	
		Layers in a Transformer Coil	330
		7.5.6.3 Proximity Effect AC/DC Resistance	
		Ratios from Dowell Curves	333
7.6	Introd	luction: Inductor and Magnetics Design Using	
		rea Product Method	338
	7.6.1	The Area Product Figure of Merit	339
	7.6.2	Inductor Design	340
	7.6.3	Low Power Signal-Level Inductors	340
	7.6.4	Line Filter Inductors	341
	,,,,,,,	7.6.4.1 Common-Mode Line Filter Inductors	341
		7.6.4.2 Toroidal Core Common-Mode Line	011
		Filter Inductors	341
		7.6.4.3 E Core Common-Mode Line Filter	011
		Inductors	344
	7.6.5	Design Example: Common-Mode 60 Hz	5-1-1
	7.0.3		345
		Line Filter	545

XVIII Switching Power Supply Design

		7.6.5.1	Step 1: Select Core Size and Establish	
			Area Product	345
		7.6.5.2	Step 2: Establish Thermal Resistance	
			and Internal Dissipation Limit	347
		7.6.5.3	Step 3: Establish Winding Resistance	348
		7.6.5.4	Step 4: Establish Turns and Wire Gauge	
			from the Nomogram Shown	
			in Figure 7.15	349
		7.6.5.5	Step 5: Calculating Turns and	
			Wire Gauge	349
	7.6.6	Series-N	Mode Line Filter Inductors	352
		7.6.6.1	Ferrite and Iron Powder Rod Core	
			Inductors	353
		7.6.6.2	High-Frequency Performance of Rod	
			Core Inductors	355
		7.6.6.3	Calculating Inductance of Rod Core	
			Inductors	356
7.7	Magn	etics: Inf	troduction to Chokes—Inductors	
	with l	Large DO	C Bias Current	358
	7.7.1		ons, Units, and Charts	359
	7.7.2		tization Characteristics (B/H Loop)	
			C Bias Current	359
	7.7.3		tizing Force H_{dc}	361
	7.7.4		ls of Increasing Choke Inductance or	
		Bias Cu	arrent Rating	362
	7.7.5	Flux De	ensity Swing ΔB	363
	7.7.6	Air Gaj	p Function	366
	7.7.7		rature Rise	367
7.8	Magn	etics De	sign: Materials	
	for Cl	nokes—I	Introduction	367
	7.8.1	Choke	Materials for Low AC Stress	
		Applica	ations	368
	7.8.2	Choke	Materials for High AC Stress	
		Applic	ations	368
	7.8.3	Choke	Materials for Mid-Range Applications	369
	7.8.4	Core M	laterial Saturation Characteristics	369
	7.8.5	Core M	laterial Loss Characteristics	370
	7.8.6	Materia	al Saturation Characteristics	371
	7.8.7	Materia	al Permeability Parameters	371
	7.8.8	Materia	al Cost	373
	7.8.9	Establis	shing Optimum Core Size and Shape	374
	7.8.10	Conclu	sions on Core Material Selection	374
7.9	Magn		noke Design Examples	375
	7.9.1	Choke	Design Example: Gapped Ferrite	
		E Core		375

	7.9.2	-	stablish Inductance for 20% Ripple	
		Current		376
	7.9 <i>.</i> 3		Stablish Area Product (AP)	377
	7.9.4		Calculate Minimum Turns	378
	7.9.5		Calculate Core Gap	378
	7.9.6		stablish Optimum Wire Size	380
	7.9.7		Calculating Optimum Wire Size	381
	7.9.8	Step 7: C	Calculate Winding Resistance	382
	7.9.9	Step 8: E	stablish Power Loss	382
	7.9.10	Step 9: P	redict Temperature Rise—Area	
		-	Method	383
	7.9.11	Step 10: 0	Check Core Loss	383
7.10	Magne	etics: Cho	ke Designs Using Powder Core	
			oduction	387
			Controlling Choice of Powder	
			terial	388
	7.10.2		Core Saturation Properties	388
			Core Material Loss Properties	389
	7.10.4	Copper I	Loss-Limited Choke Designs for Low	
			S	391
	7.10.5	Core Los	s-Limited Choke Designs for High	
			× · · · · · · · · · · · · · · · · · · ·	392
	7.10.6		esigns for Medium AC Stress	392
			terial Saturation Properties	393
	7.10.8	Core Geo	ometry	393
		Material		394
7.11			Example: Copper Loss Limited Using	
	Kool N	Mu Powd	er Toroid	395
		Introduc		395
			Core Size by Energy Storage and Area	
			Methods	395
	7.11.3		Loss–Limited Choke Design Example	397
		7.11.3.1	Step 1: Calculate Energy Storage	
			Number	397
		7.11.3.2	Step 2: Establish Area Product	
			and Select Core Size	397
		7.11.3.3	Step 3: Calculate Initial Turns	397
		7.11.3.4	Step 4: Calculate DC Magnetizing	
		,	Force	399
		7.11.3.5	Step 5: Establish New Relative	0,,,
			Permeability and Adjust Turns	399
		7.11.3.6	Step 6: Establish Wire Size	399
		7.11.3.7	Step 7: Establish Copper Loss	400
		7.11.3.8	Step 8: Check Temperature Rise	100
			by Energy Density Method	400
			of Energy Density Method	100

XX Switching Power Supply Design

	7.11.3.9	Step 9: Predict Temperature Rise by Area	
		Product Method	401
		Step 10: Establish Core Loss	401
7.12 Choke	e Design E	xamples Using Various Powder	
E Con	es		403
7.12.1	Introduct	tion	403
7.12.2	First Exa	mple: Choke Using a #40 Iron Powder	
	E Core		404
	7.12.2.1	Step 1: Calculate Inductance for 1.5 Amps	
		Ripple Current	404
	7.12.2.2	Step 2: Calculate Energy	
		Storage Number	406
	7.12.2.3	Step 3: Establish Area Product and Select	
		Core Size	407
	7.12.2.4	Step 4: Calculate Initial Turns	407
	7.12.2.5	Step 5: Calculate Core Loss	409
	7.12.2.6	Step 6: Establish Wire Size	411
	7.12.2.7	Step 7: Establish Copper Loss	411
7.12.3	Second E	xample: Choke Using a #8 Iron Powder	
	E Core		412
	7.12.3.1	Step 1: Calculate New Turns	412
	7.12.3.2	Step 2: Calculate Core Loss with	
		#8 Mix	412
	7.12.3.3	Step 3: Establish Copper Loss	413
	7.12.3.4	Step 4: Calculate Efficiency and	
		Temperature Rise	413
7.12.4	Third Ex	ample: Choke Using #60 Kool Mµ	
	E Cores		413
	7.12.4.1	Step 1: Select Core Size	414
	7.12.4.2	Step 2: Calculate Turns	414
	7.12.4.3	Step 3: Calculate DC Magnetizing	
		Force	415
	7.12.4.4	Step 4: Establish Relative Permeability	
		and Adjust Turns	415
	7.12.4.5	Step 5: Calculate Core Loss with	
		#60 Kool Mµ Mix	415
	7.12.4.6	Step 6: Establish Wire Size	416
	7.12.4.7	Step 7: Establish Copper Loss	416
	7.12.4.8	Step 8: Establish Temperature Rise	416
7.13 Swing	ing Chok	e Design Example: Copper Loss	
		Kool Mµ Powder E Core	417
		g Chokes	417
7.13.2	Swinging	g Choke Design Example	418
	7.13.2.1	Step 1: Calculate Energy Storage	
		Number	418

7	.13.2.2	Step 2: Establish Area Product and	
		Select Core Size	418
7	.13.2.3	Step 3: Calculate Turns for	
		100 Oersteds	419
7	.13.2.4	Step 4: Calculate Inductance	419
7	.13.2.5	Step 5: Calculate Wire Size	420
7	.13.2.6	Step 6: Establish Copper Loss	420
7	.13.2.7	Step 7: Check Temperature Rise by	
		Thermal Resistance Method	420
7	.13.2.8	Step 8: Establish Core Loss	421
References			421

8	Bip	olar F	ower T	ransistor Base Drive Circuits	423
	8.1		duction		423
	8.2	The k	Key Obie	ctives of Good Base Drive Circuits	
				ansistors	424
		8.2.1	-	ently High Current Throughout	
				n″ Time	424
		8.2.2		e of High Base Input Current I _{b1} at Instant	
				u "On"	425
		8.2.3	A Spik	e of High Reverse Base Current I_{b2}	
			at the I	nstant of Turn "Off" (Figure 8.2a)	427
		8.2.4		-to-Emitter Reverse Voltage Spike	
			-1 to -5	5 V in Amplitude at the Instant	
			of Turn	"Off"	427
		8.2.5	The Ba	ker Clamp (A Circuit That Works Equally	
			Well w	ith High-or Low-Beta Transistors)	429
		8.2.6		ring Drive Efficiency	429
	8.3	Trans	former (Coupled Baker Clamp Circuits	430
		8.3.1		Clamp Operation	431
		8.3.2	Transfo	ormer Coupling into a Baker Clamp	435
			8.3.2.1	Transformer Supply Voltage, Turns Ratio	
				Selection, and Primary and Secondary	
				Current Limiting	435
			8.3.2.2		
				Derived from Flyback Action	
				in Drive Transformer	437
			8.3.2.3	Drive Transformer Primary Current	
				Limiting to Achieve Equal Forward	
				and Reverse Base Currents in Power	
				Transistor at End of the "On" Time	438
			8.3.2.4	Design Example—Transformer-Driven	
				Baker Clamp	439

XXII Switching Power Supply Design

		8.3.3	Baker Clamp with Integral Transformer	440
			8.3.3.1 Design Example—Transformer	
			Baker Clamp	442
		8.3.4	Inherent Baker Clamping with a Darlington	
			Transistor	442
		8.3.5	Proportional Base Drive	443
			8.3.5.1 Detailed Circuit Operation—Proportional	
			Base Drive	443
			8.3.5.2 Quantitative Design of Proportional Base	
			Drive Scheme	446
			8.3.5.3 Selection of Holdup Capacitor	
			(C1, Figure 8.12) to Guarantee	
			Power Transistor Turn "Off"	447
			8.3.5.4 Base Drive Transformer Primary	
			Inductance and Core Selection	449
			8.3.5.5 Design Example—Proportional	
			Base Drive	449
		8.3.6	Miscellaneous Base Drive Schemes	450
	Refe	erences	• • • • • • • • • • • • • • • • • • • •	455
9	MC	SFET	and IGBT Power Transistors and	
	Gat	te Driv	ve Requirements	457
	9.1	MOSF	FET Introduction	457
		9.1.1	IGBT Introduction	457
		9.1.2	The Changing Industry	458
		9.1.3	The Impact on New Designs	458
	9.2	MOSE	FET Basics	459
		9.2.1	Typical Drain Current vs. Drain-to-Source Voltage	
			Characteristics $(I_d - V_{ds})$ for a FET Device	461
		9.2.2	"On" State Resistance r _{ds (on)}	461
		9.2.3	MOSFET Input Impedance Miller Effect	
			and Required Gate Currents	464
		9.2.4	Calculating the Gate Voltage Rise and Fall Times	
			for a Desired Drain Current Rise and Fall Time	467
		9.2.5	MOSFET Gate Drive Circuits	468
		9.2.6	MOSFET R _{ds} Temperature Characteristics	
			and Safe Operating Area Limits	473
		9.2.7	MOSFET Gate Threshold Voltage	
			and Temperature Characteristics	475
		9.2.8	MOSFET Switching Speed and Temperature	
			Characteristics	476
		9.2.9	MOSFET Current Ratings	477
		9.2.10	Paralleling MOSFETs	480
		9.2.11	MOSFETs in Push-Pull Topology	483
		9.2.12	2 MOSFET Maximum Gate Voltage Specifications	484
		9.2.13	B MOSFET Drain-to-Source "Body" Diode	485

9.3	Introd	luction t	o Insulated Gate Bipolar	
	Transi	istors (IC	GBTs)	487
	9.3.1	Selectin	ng Suitable IGBTs for Your Application	488
	9.3.2		Construction Overview	489
		9.3.2.1	Equivalent Circuits	490
	9.3.3	Perform	nance Characteristics of IGBTs	490
		9.3.3.1	Turn "Off" Characteristics of IGBTs	490
		9.3.3.2	The Difference Between PT- and	
			NPT-Type IGBTs	491
		9.3.3.3	The Conduction of PT- and	
			NPT-Type IGBTs	491
		9.3.3.4	The Link Between Ruggedness and	
			Switching Loss in PT- and	
			NPT-Type IGBTs	491
		9.3.3.5	IGBT Latch-Up Possibilities	492
		9.3.3.6	Temperature Effects	493
	9.3.4	Parallel	l Operation of IGBTs	493
	9.3.5	Specific	cation Parameters	
		and Ma	aximum Ratings	494
	9.3.6		lectrical Characteristics	498
	9.3.7	Dynam	ic Characteristics	499
	9.3.8	Therma	al and Mechanical Characteristics	504
Refe	erences			509

10	Mag	netic-A	Amplifier Postregulators	511
	10.1	Introd	uction	511
	10.2	Linear	and Buck Postregulators	513
	10.3	Magne	etic Amplifiers—Introduction	513
		10.3.1	Square Hysteresis Loop Magnetic Core	
			as a Fast Acting On/Off Switch with	
			Electrically Adjustable "On" and	
			"Off" Times	516
		10.3.2	Blocking and Firing Times	
			in Magnetic-Amplifier Postregulators	519
		10.3.3	Magnetic-Amplifier Core Resetting	
			and Voltage Regulation	520
		10.3.4	Slave Output Voltage Shutdown	
			with Magnetic Amplifiers	521
		10.3.5	Square Hysteresis Loop Core Characteristics	
			and Sources	522
		10.3.6	Core Loss and Temperature Rise	
			Calculations	529
		10.3.7	Design Example—Magnetic-Amplifier	
			Postregulator	534

		10.3.8 Magnetic-Amplifier Gain10.3.9 Magnetic Amplifiers for a	539
		Push-Pull Output	540
	10.4	Magnetic Amplifier Pulse-Width Modulator	010
	10.1	and Error Amplifier	540
		10.4.1 Circuit Details, Magnetic Amplifier	0 10
		Pulse-Width Modulator–Error Amplifier	541
	Pofor	ences	544
	Kelei	ences	044
11	Ana	lysis of Turn "On" and Turn "Off" Switching	
11		es and the Design of Load-Line Shaping	
		ober Circuits	545
	11.1	Introduction	545
	11.1	Transistor Turn "Off" Losses Without a Snubber	547
			548
	11.3	1	
	11.4	· · · · · · · · · · · · · · · · · · ·	550
	11.5	Design Example— <i>RCD</i> Snubber	551
		11.5.1 RCD Snubber Returned to Positive	
		Supply Rail	552
		Non-Dissipative Snubbers	553
	11.7	Load-Line Shaping (The Snubber's Ability	
		to Reduce Spike Voltages so as to Avoid	
		Secondary Breakdown)	555
	11.8	Transformer Lossless Snubber Circuit	558
	Refe	rences	559
12	Feed	iback Loop Stabilization	561
	12.1	Introduction	56 1
	12.2	Mechanism of Loop Oscillation	563
		12.2.1 The Gain Criterion for a Stable Circuit	563
		12.2.2 Gain Slope Criteria for a Stable Circuit	563
		12.2.3 Gain Characteristic of Output LC Filter with	
		and without Equivalent Series Resistance	
		(ESR) in Output Capacitor	567
		12.2.4 Pulse-Width-Modulator Gain	570
		12.2.5 Gain of Output LC Filter Plus Modulator	
		and Sampling Network	571
	12.3	Shaping Error-Amplifier Gain Versus Frequency	
	-	Characteristic	572
	12.4	Error-Amplifier Transfer Function, Poles,	
		and Zeros	575
	12.5	Rules for Gain Slope Changes Due to Zeros	
		and Poles	576

12.6	Derivation of Transfer Function of an Error Amplifier	
	with Single Zero and Single Pole	
10.77	from Its Schematic	578
12.7	Calculation of Type 2 Error-Amplifier Phase Shift	
4.0.0	from Its Zero and Pole Locations	579
12.8	Phase Shift Through LC Filter with	
	Significant ESR	580
12.9	Design Example—Stabilizing a Forward Converter	
	Feedback Loop with a Type 2 Error Amplifier	582
12.10	Type 3 Error Amplifier—Application and Transfer	
	Function	585
12.11	Phase Lag Through a Type 3 Error Amplifier as	
	Function of Zero and Pole Locations	587
12.12	Type 3 Error Amplifier Schematic, Transfer Function,	
	and Zero and Pole Locations	588
12.13	Design Example—Stabilizing a Forward Converter	
	Feedback Loop with a Type 3 Error Amplifier	590
12.14	Component Selection to Yield Desired Type 3	
	Error-Amplifier Gain Curve	592
12.15	Conditional Stability in Feedback Loops	593
12.16	Stabilizing a Discontinuous-Mode Flyback	
	Converter	595
	12.16.1 DC Gain from Error-Amplifier Output	
	to Output Voltage Node	595
	12.16.2 Discontinuous-Mode Flyback Transfer	
	Function from Error-Amplifier Output	
	to Output Voltage Node	597
12.17	Error-Amplifier Transfer Function for	
	Discontinuous-Mode Flyback	599
12.18	Design Example—Stabilizing	
	a Discontinuous-Mode Flyback Converter	600
12.19	Transconductance Error Amplifiers	602
	ences	605
Daga	nant Converters	607
		607
13.1	Introduction	608
13.2	Resonant Converters	
13.3	The Resonant Forward Converter	609
	13.3.1 Measured Waveforms in a Resonant	
40.4	Forward Converter	612
13.4	Resonant Converter Operating Modes	614
	13.4.1 Discontinuous and Continuous: Operating	
	Modes Above and Below Resonance	614

13

XXVI Switching Power Supply Design

13.5	Resonant Half Bridge in Continuous-							
	Condu	iction Mode	616					
	13.5.1	Parallel Resonant Converter (PRC) and						
		Series Resonant Converter (SRC)	616					
	13.5.2	AC Equivalent Circuits and Gain Curves for						
		Series-Loaded and Parallel-Loaded Half Bridges						
		Operating in the Continuous-Conduction						
		Mode	619					
	13.5.3	Regulation with Series-Loaded Half Bridge						
		in Continuous-Conduction Mode (CCM)	620					
	13.5.4	Regulation with a Parallel-Loaded Half Bridge						
		in the Continuous-Conduction Mode	621					
	13.5.5	Series-Parallel Resonant Converter						
		in Continuous-Conduction Mode	622					
	13.5.6	Zero-Voltage-Switching Quasi-Resonant (CCM)						
		Converters	623					
13.6	Resona	ant Power Supplies—Conclusion	627					
Refer	rences		628					

Part III Waveforms

Typical Waveforms for Switching Power Supplies 631				
	_		631	
14.2	*			
		···	633	
	14.2.2	$V_{\rm ds}$, I_d Photos at 40% of Full Load	635	
	14.2.3	Overlap of Drain Voltage and Drain Current		
		at Turn "On" / Turn "Off" Transitions	635	
	14.2.4	Relative Timing of Drain Current,		
		Drain-to-Source Voltage, and Gate-to-Source		
		Voltage	638	
	14.2.5	Relationship of Input Voltage to Output		
		Inductor, Output Inductor Current Rise and		
		Fall Times, and Power Transistor Drain-Source		
			638	
	14.2.6	0		
		0		
			639	
14.2	Duch T		640	
14.5				
	14.3.1	<u> </u>		
		Drain-to-Source Voltages at Maximum Load		
		Currents for Maximum, Nominal, and		
		Minimum Supply Voltages	642	
	Swit 14.1	Switching J 14.1 Introdu 14.2 Forwar 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.5	Switching Power Supplies14.114.1Introduction14.2Forward Converter Waveshapes14.2.1 V_{ds} , I_d Photos at 80% of Full Load14.2.2 V_{ds} , I_d Photos at 40% of Full Load14.2.3Overlap of Drain Voltage and Drain Current at Turn "On"/Turn "Off" Transitions14.2.4Relative Timing of Drain Current, Drain-to-Source Voltage, and Gate-to-Source Voltage14.2.5Relationship of Input Voltage to Output Inductor, Output Inductor Current Rise and Fall Times, and Power Transistor Drain-Source Voltage14.2.6Relative Timing of Critical Waveforms in PWM Driver Chip (UC3525A) for Forward Converter of Figure 14.114.3Push-Pull Topology Waveshapes—Introduction Drain-to-Source Voltages at Maximum Load	

	14.3.2	Opposing V _{ds} Waveshapes, Relative Timing, and Flux Locus During Dead Time	644
	14.3.3	Relative Timing of Gate Input Voltage,	
		Drain-to-Source Voltage, and Drain	
		Currents	647
	14.3.4	Drain Current Measured with a Current Probe	
		in the Drain Compared to that Measured	
		with a Current Probe in the Transformer	
		Center Tap	647
	14.3.5	Output Ripple Voltage and Rectifier Cathode	
		Voltage	647
	14.3.6	Oscillatory Ringing at Rectifier Cathodes	
		after Transistor Turn "On"	650
	14.3.7	AC Switching Loss Due to Overlap of Falling	
		Drain Current and Rising Drain Voltage	
		at Turn "Off"	650
	14.3.8	Drain Currents as Measured in the Transformer	
		Center Tap and Drain-to-Source Voltage	
		at One-Fifth of Maximum Output Power	652
	14.3.9	Drain Current and Voltage at One-Fifth	
		Maximum Output Power	655
	14.3.10	Relative Timing of Opposing Drain Voltages	
		at One-Fifth Maximum Output Currents	655
	14.3.11	Controlled Output Inductor Current	
		and Rectifier Cathode Voltage	656
	14.3.12	Controlled Rectifier Cathode Voltage Above	
		Minimum Output Current	656
		Gate Voltage and Drain Current Timing	656
	14.3.14	Rectifier Diode and Transformer Secondary	
		Currents	656
	14.3.15	Apparent Double Turn "On" per Half Period	
		Arising from Excessive Magnetizing Current	
		or Insufficient Output Currents	658
	14.3.16	Drain Currents and Voltages at 15% Above	
		Specified Maximum Output Power	659
	14.3.17	Ringing at Drain During Transistor	
		Dead Time	659
14.4		Copology Waveshapes	660
	14.4.1	Introduction	660
	14.4.2	Drain Current and Voltage Waveshapes	
		at 90% of Full Load for Minimum, Nominal,	
		and Maximum Input Voltages	662
	14.4.3	Voltage and Currents at Output Rectifier	
		Inputs	662

XXVIII Switching Power Supply Design

		14.4.4	Snubber Capacitor Current at Transistor Turn "Off"	665
	Refer	rences		666
Part	IV		Recent Applications for Switching Supply Techniques	
15	Pow	er Facto	or and Power Factor Correction	669
	15.1	Power	Factor—What Is It and Why Must It Be	
		Correc		669
	15.2		Factor Correction in Switching Power	
		Suppli		671
	15.3		Factor Correction—Basic Circuit Details	673
		15.3.1	Continuous- Versus Discontinuous-Mode Boost	
			Topology for Power Factor Correction	676
		15.3.2	Line Input Voltage Regulation	
			in Continuous-Mode Boost Converters	678
		15.3.3	Load Current Regulation	
	1 - 4	Tet	in Continuous-Mode Boost Regulators	679
	15.4	0	ated-Circuit Chips for Power Factor	681
		Correc 15.4.1	tion The Unitrode UC 3854 Power Factor Correction	001
		15.4.1		681
		15,4 .2	Chip Forcing Sinusoidal Line Current with the	001
		13,4.2	UC 3854	682
		15.4.3	Maintaining Constant Output Voltage with	002
		10.10	UC 3854	684
		15.4.4	Controlling Power Output with the	001
			UC 3854	685
		15.4.5	Boost Switching Frequency with the	
			UC 3854	687
		15.4.6	Selection of Boost Output Inductor L1	687
		15.4.7	Selection of Boost Output Capacitor	688
		15.4.8	Peak Current Limiting in the UC 3854	690
		15.4.9	Stabilizing the UC 3854 Feedback Loop	690
	15.5	The M	lotorola MC 34261 Power Factor	
			tion Chip	691
		15.5.1	More Details of the Motorola MC 34261	
			(Figure 15.11)	693
		15.5.2	Logic Details for the MC 34261 (Figures 15.11	
			and 15.12)	693
		15.5.3	Calculations for Frequency and Inductor L1	694
		15.5.4	Selection of Sensing and Multiplier Resistors	
	D (for the MC 34261	696
	Kete	rences		697

16	Electronic Ballasts: High-Frequency Power					
			for Fluorescent Lamps	699		
	16.1	Introd	uction: Magnetic Ballasts	699		
	16.2	Fluorescent LampPhysics and Types				
	16.3	Electric Arc Characteristics				
		16.3.1	Arc Characteristics with DC			
			Supply Voltage	707		
		16.3.2	AC-Driven Fluorescent Lamps	709		
		16.3.3	Fluorescent Lamp Volt/Ampere			
			Characteristics with an Electronic Ballast	711		
	16.4	Electro	onic Ballast Circuits	715		
	16.5	DC/A	C Inverter—General Characteristics	716		
	16.6	DC/A	C Inverter Topologies	717		
		16.6.1	Current-Fed Push-Pull Topology	718		
		16.6.2	Voltage and Currents in Current-Fed			
			Push-Pull Topology	720		
		16.6.3	Magnitude of "Current Feed" Inductor			
			in Current-Fed Topology	721		
		16.6.4	Specific Core Selection for Current Feed			
			Inductor	722		
		16.6.5	Coil Design for Current Feed Inductor	729		
		16.6.6	Ferrite Core Transformer for Current-Fed			
			Тороlogy	729		
		16.6.7	Toroidal Core Transformer for Current-Fed			
			Topology	737		
	16.7		e-Fed Push-Pull Topology	737		
	16 .8	Currer	nt-Fed Parallel Resonant Half Bridge			
		Topology				
	16.9	Voltage-Fed Series Resonant Half Bridge				
		Topology				
	16.10	Electro	nic Ballast Packaging	745		
	Refer	rences		745		
17	Low	-Input-	Voltage Regulators for Laptop			
	Com	nuters	and Portable Electronics	747		
	17.1	Introd		747		
	17.2		nput-Voltage IC Regulator Suppliers	748		
	17.3		Technology Corporation Boost and Buck	7 10		
	17.5		ators	749		
		17.3.1	Linear Technology LT1170			
		17.0.1	Boost Regulator	751		
		17.3.2	Significant Waveform Photos in the LT1170	101		
		17.0.4	Boost Regulator	753		
		17.3.3	Thermal Considerations in IC Regulators	756		
		17.0.0	memar considerations in the negations	,00		

XXX Switching Power Supply Design

Regulator75917.3.4.1 LT1170 Buck Regulator75917.3.4.2 LT1170 Driving High-Voltage MOSFETS or NPN Transistors75917.3.4.3 LT1170 Negative Buck Regulator76217.3.4.4 LT1170 Negative-to-Positive Polarity Inverter76217.3.4.5 Positive-to-Negative Polarity Inverter76317.3.4.6 LT1170 Negative Boost Regulator76317.3.5 Additional LTC High-Power Boost Regulators76317.3.6 Component Selection for Boost Regulators76417.3.6.1 Output Inductor L1 Selection76417.3.6.2 Output Capacitor C1 Selection76717.3.7 Linear Technology Buck Regulator76717.3.8.1 LT1074 Buck Regulator76717.3.8.1 LT1074 Positive-to-Negative Polarity Inverter77017.3.8.1 LT1074 Negative Boost Regulator77117.3.8.3 Thermal Considerations for LT107477317.3.9 LTC High-Efficiency High-Power Buck Regulators77517.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2 LTC1148 Block Diagram777
17.3.4.1 LT1170 Buck Regulator75917.3.4.2 LT1170 Driving High-Voltage MOSFETS or NPN Transistors75917.3.4.3 LT1170 Negative Buck Regulator76217.3.4.4 LT1170 Negative-to-Positive Polarity Inverter76217.3.4.5 Positive-to-Negative Polarity Inverter76317.3.4.6 LT1170 Negative Boost Regulator76317.3.5 Additional LTC High-Power Boost Regulators76317.3.6 Component Selection for Boost Regulators76417.3.6.1 Output Inductor L1 Selection76417.3.6.2 Output Capacitor C1 Selection76717.3.7 Linear Technology Buck Regulator Family76717.3.8 Alternative Uses for the LT1074 Buck Regulator77017.3.8.1 LT1074 Positive-to-Negative Polarity Inverter77017.3.8.3 Thermal Considerations for LT107477317.3.9 LTC High-Efficiency, High-Power Buck Regulators77517.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches775
17.3.4.2 LT1170 Driving High-Voltage MOSFETS or NPN Transistors 759 17.3.4.3 LT1170 Negative Buck Regulator 762 17.3.4.4 LT1170 Negative-to-Positive Polarity Inverter 762 17.3.4.5 Positive-to-Negative Polarity Inverter 763 17.3.4.6 LT1170 Negative Boost Regulator 763 17.3.5 Additional LTC High-Power Boost Regulators 763 17.3.6 Component Selection for Boost Regulators 764 17.3.6.1 Output Inductor L1 Selection 764 17.3.6.2 Output Capacitor C1 Selection 767 17.3.7 Linear Technology Buck Regulator 767 17.3.8 Alternative Uses for the LT1074 Buck Regulator 767 17.3.8.1 LT1074 Positive-to-Negative Polarity Inverter 770 17.3.8.2 LT1074 Negative Boost Regulator 771 17.3.8.3 Thermal Considerations for LT1074 773 17.3.9 LTC High-Efficiency High-Power Buck Regulators 775 17.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator 775 17.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches 775
MOSFETS or NPN Transistors75917.3.4.3 LT1170 Negative Buck Regulator76217.3.4.4 LT1170 Negative-to-Positive PolarityInverterInverter76317.3.4.5 Positive-to-Negative Polarity76317.3.4.6 LT1170 Negative Boost76317.3.5 Additional LTC High-Power Boost76317.3.6 Component Selection for800st RegulatorsBoost Regulators76417.3.6.1 Output Inductor L1 Selection76417.3.6.2 Output Capacitor C1 Selection76717.3.7 Linear Technology Buck Regulator Family76717.3.8 Alternative Uses for the LT1074 Buck76017.3.8.1 LT1074 Positive-to-Negative76017.3.8.2 LT1074 Negative Boost Regulator77117.3.8.3 Thermal Considerations77517.3.9 LTC High-Efficiency High-Power Buck77517.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches775
17.3.4.3 LT1170 Negative Buck Regulator 762 17.3.4.4 LT1170 Negative-to-Positive Polarity 762 17.3.4.5 Positive-to-Negative Polarity 763 17.3.4.6 LT1170 Negative Boost 763 17.3.4.6 LT1170 Negative Boost 763 17.3.4.6 LT1170 Negative Boost 763 17.3.5 Additional LTC High-Power Boost 763 17.3.6 Component Selection for 763 17.3.6.1 Output Inductor L1 Selection 764 17.3.6.2 Output Capacitor C1 Selection 765 17.3.6.3 Output Diode Dissipation 767 17.3.7 Linear Technology Buck Regulator Family 767 17.3.8 Alternative Uses for the LT1074 Buck 770 17.3.8.1 LT1074 Positive-to-Negative 770 17.3.8.2 LT1074 Negative Boost Regulator 771 17.3.8.3 Thermal Considerations 771 17.3.9.1 LT1074 Negative Boost Regulator 773 17.3.9.1 LT1376 High-Frequency, Low Switch 775 17.3.9.2 LTC1148 High-Efficiency Buck 775 17.3.9.2 LTC1148 High-Efficiency Buck 775
17.3.4.4 LT1170 Negative-to-Positive Polarity Inverter 762 17.3.4.5 Positive-to-Negative Polarity Inverter 763 17.3.4.6 LT1170 Negative Boost Regulator 763 17.3.5 Additional LTC High-Power Boost Regulators 763 17.3.6 Component Selection for Boost Regulators 764 17.3.6.1 Output Inductor L1 Selection 764 17.3.6.2 Output Capacitor C1 Selection 765 17.3.7 Linear Technology Buck Regulator Family 767 17.3.8 Alternative Uses for the LT1074 Buck Regulator 770 17.3.8.1 LT1074 Positive-to-Negative Polarity Inverter 770 17.3.8.2 LT1074 Negative Boost Regulator 771 17.3.8.3 Thermal Considerations for LT1074 773 17.3.9 LTC High-Efficiency, High-Power Buck Regulators 775 17.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator 775 17.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches 775
Inverter76217.3.4.5 Positive-to-Negative PolarityInverterInverter76317.3.4.6 LT1170 Negative BoostRegulatorRegulator76317.3.5 Additional LTC High-Power Boost76317.3.6 Component Selection for8000000000000000000000000000000000000
17.3.4.5 Positive-to-Negative Polarity Inverter76317.3.4.6 LT1170 Negative Boost Regulator76317.3.5 Additional LTC High-Power Boost Regulators76317.3.6 Component Selection for Boost Regulators76417.3.6.1 Output Inductor L1 Selection76417.3.6.2 Output Capacitor C1 Selection76517.3.6.3 Output Diode Dissipation76717.3.7 Linear Technology Buck Regulator Family76717.3.8 Alternative Uses for the LT1074 Buck Regulator77017.3.8.1 LT1074 Positive-to-Negative Polarity Inverter77017.3.8.3 Thermal Considerations for LT107477317.3.9 LTC High-Efficiency High-Power Buck Regulators77517.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches775
Inverter76317.3.4.6LT1170 Negative BoostRegulator76317.3.5Additional LTC High-Power BoostRegulators76317.3.6Component Selection forBoost Regulators76417.3.6.1Output Inductor L1 Selection17.3.6.2Output Capacitor C1 Selection17.3.7Linear Technology Buck Regulator17.3.7.1LT1074 Buck Regulator17.3.8.1LT1074 Buck Regulator76017.3.8.117.3.8.1LT1074 Positive-to-NegativePolarity Inverter77017.3.8.3Thermal Considerationsfor LT1074
17.3.4.6 LT1170 Negative Boost Regulator76317.3.5 Additional LTC High-Power Boost Regulators76317.3.6 Component Selection for Boost Regulators76417.3.6 Component Selection for Boost Regulators76417.3.6 Output Inductor L1 Selection76417.3.6.1 Output Inductor L1 Selection76517.3.6.2 Output Capacitor C1 Selection76717.3.7 Linear Technology Buck Regulator Family76717.3.7.1 LT1074 Buck Regulator76717.3.8.1 LT1074 Positive-to-Negative Polarity Inverter77017.3.8.2 LT1074 Negative Boost Regulator77117.3.8.3 Thermal Considerations for LT107477317.3.9 LTC High-Efficiency High-Power Buck Regulators77517.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches775
Regulator76317.3.5Additional LTC High-Power Boost Regulators76317.3.6Component Selection for Boost Regulators76417.3.6Output Inductor L1 Selection76417.3.6.1Output Inductor L1 Selection76517.3.6.2Output Capacitor C1 Selection76517.3.6.3Output Diode Dissipation76717.3.7Linear Technology Buck Regulator Family76717.3.8Alternative Uses for the LT1074 Buck Regulator76017.3.8.1LT1074 Positive-to-Negative Polarity Inverter77017.3.8.2LT1074 Negative Boost Regulator77117.3.8.3Thermal Considerations for LT107477317.3.9LTC High-Efficiency, High-Power Buck Regulators77517.3.9.1LT1376 High-Frequency, Low Switch
17.3.5 Additional LTC High-Power Boost Regulators 763 17.3.6 Component Selection for Boost Regulators 764 17.3.6.1 Output Inductor L1 Selection 764 17.3.6.2 Output Capacitor C1 Selection 765 17.3.6.3 Output Diode Dissipation 767 17.3.7 Linear Technology Buck Regulator Family 767 17.3.7.1 LT1074 Buck Regulator 767 17.3.8 Alternative Uses for the LT1074 Buck 770 17.3.8.1 LT1074 Positive-to-Negative 770 17.3.8.2 LT1074 Negative Boost Regulator 771 17.3.8.3 Thermal Considerations for LT1074 773 17.3.9 LTC High-Efficiency, High-Power Buck 775 17.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator 775 17.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches 775
Regulators76317.3.6Component Selection for Boost Regulators76417.3.6.1Output Inductor L1 Selection76417.3.6.2Output Capacitor C1 Selection76517.3.6.3Output Diode Dissipation76717.3.7Linear Technology Buck Regulator Family76717.3.8Alternative Uses for the LT1074 Buck Regulator77017.3.8.1LT1074 Positive-to-Negative Polarity Inverter77017.3.8.2LT1074 Negative Boost Regulator77117.3.8.3Thermal Considerations for LT107477317.3.9LTC High-Efficiency, High-Power Buck Regulators77517.3.9.1LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2LTC1148 High-Efficiency Buck with External MOSFET Switches775
17.3.6 Component Selection for Boost Regulators 764 17.3.6.1 Output Inductor L1 Selection 764 17.3.6.2 Output Capacitor C1 Selection 765 17.3.6.3 Output Diode Dissipation 767 17.3.7 Linear Technology Buck Regulator Family 767 17.3.7.1 LT1074 Buck Regulator Family 767 17.3.8 Alternative Uses for the LT1074 Buck 770 17.3.8.1 LT1074 Positive-to-Negative 770 17.3.8.2 LT1074 Negative Boost Regulator 771 17.3.8.3 Thermal Considerations 773 17.3.9 LTC High-Efficiency, High-Power Buck 775 17.3.9.1 LT1376 High-Frequency, Low Switch 775 17.3.9.2 LTC1148 High-Efficiency Buck 775 17.3.9.2 LTC1148 High-Efficiency Buck 775
Boost Regulators76417.3.6.1 Output Inductor L1 Selection76417.3.6.2 Output Capacitor C1 Selection76517.3.6.3 Output Diode Dissipation76717.3.7 Linear Technology Buck Regulator Family76717.3.7.1 LT1074 Buck Regulator76717.3.8 Alternative Uses for the LT1074 Buck77017.3.8.1 LT1074 Positive-to-Negative77017.3.8.2 LT1074 Negative Boost Regulator77117.3.8.3 Thermal Considerations77317.3.9 LTC High-Efficiency, High-Power Buck77517.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches775
17.3.6.1 Output Inductor L1 Selection 764 17.3.6.2 Output Capacitor C1 Selection 765 17.3.6.3 Output Diode Dissipation 767 17.3.7 Linear Technology Buck Regulator Family 767 17.3.7 Linear Technology Buck Regulator 767 17.3.7 Linear Technology Buck Regulator 767 17.3.8 Alternative Uses for the LT1074 Buck 770 17.3.8.1 LT1074 Positive-to-Negative 770 17.3.8.2 LT1074 Negative Boost Regulator 771 17.3.8.3 Thermal Considerations 773 17.3.9 LTC High-Efficiency High-Power Buck 775 17.3.9.1 LT1376 High-Frequency, Low Switch 775 17.3.9.2 LTC1148 High-Efficiency Buck 775 17.3.9.2 LTC1148 High-Efficiency Buck 775 17.3.9.2 LTC1148 High-Efficiency Buck 775
17.3.6.2 Output Capacitor C1 Selection 765 17.3.6.3 Output Diode Dissipation 767 17.3.7 Linear Technology Buck Regulator Family 767 17.3.8 Alternative Uses for the LT1074 Buck 770 17.3.8.1 LT1074 Positive-to-Negative 770 17.3.8.2 LT1074 Negative Boost Regulator 771 17.3.8.3 Thermal Considerations 773 17.3.9 LTC High-Efficiency High-Power Buck 775 17.3.9.1 LT1376 High-Frequency, Low Switch 775 Drop Buck Regulator 775 17.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches 775
17.3.6.3 Output Diode Dissipation76717.3.7 Linear Technology Buck Regulator Family76717.3.7.1 LT1074 Buck Regulator76717.3.8 Alternative Uses for the LT1074 Buck77017.3.8.1 LT1074 Positive-to-Negative77017.3.8.1 LT1074 Positive-to-Negative77017.3.8.2 LT1074 Negative Boost Regulator77117.3.8.3 Thermal Considerations77317.3.9 LTC High-Efficiency, High-Power Buck77517.3.9.1 LT1376 High-Frequency, Low Switch77517.3.9.2 LTC1148 High-Efficiency Buck77517.3.9.2 LTC1148 High-Efficiency Buck77517.3.9.2 LTC1148 High-Efficiency Buck77517.3.9.2 LTC1148 High-Efficiency Buck77517.3.9.2 LTC1148 High-Efficiency Buck77517.3.9.3 LTC1148 High-Efficiency Buck77517.3.9.4 LTC1148 High-Efficiency Buck77517.3.9.5 LTC1148 High-Efficiency Buck77517.3.9.7 LT11376 High-Frequency, Low Switch77517.3.9.7 LTC1148 High-Efficiency Buck77517.3.9.1 LT1376 High-Efficiency Buck77517.3.9.2 LTC1148 High-Efficiency Buck775
17.3.7Linear Technology Buck Regulator Family76717.3.7.1LT1074 Buck Regulator76717.3.8Alternative Uses for the LT1074 Buck Regulator77017.3.8.1LT1074 Positive-to-Negative Polarity Inverter77017.3.8.2LT1074 Negative Boost Regulator77117.3.8.3Thermal Considerations for LT107477317.3.9LTC High-Efficiency, High-Power Buck Regulators77517.3.9.1LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2LTC1148 High-Efficiency Buck with External MOSFET Switches775
17.3.7.1 LT1074 Buck Regulator 767 17.3.8 Alternative Uses for the LT1074 Buck 770 17.3.8 Alternative Uses for the LT1074 Buck 770 17.3.8.1 LT1074 Positive-to-Negative 770 17.3.8.1 LT1074 Positive-to-Negative 770 17.3.8.2 LT1074 Negative Boost Regulator 771 17.3.8.3 Thermal Considerations 773 17.3.9 LTC High-Efficiency, High-Power Buck 775 17.3.9.1 LT1376 High-Frequency, Low Switch 775 17.3.9.2 LTC1148 High-Efficiency Buck 775 17.3.9.2 LTC1148 High-Efficiency Buck 775 17.3.9.4 LTC1148 High-Efficiency Buck 775
17.3.8 Alternative Uses for the LT1074 Buck Regulator 770 17.3.8.1 LT1074 Positive-to-Negative Polarity Inverter 770 17.3.8.2 LT1074 Negative Boost Regulator 771 17.3.8.3 Thermal Considerations 773 17.3.9 LTC High-Efficiency, High-Power Buck 775 17.3.9.1 LT1376 High-Frequency, Low Switch 775 17.3.9.2 LTC1148 High-Efficiency Buck 775 17.3.9.2 LTC1148 High-Efficiency Switch 775 17.3.9.2 LTC1148 High-Efficiency Buck 775
17.3.8 Alternative Uses for the LT1074 Buck Regulator 770 17.3.8.1 LT1074 Positive-to-Negative Polarity Inverter 770 17.3.8.2 LT1074 Negative Boost Regulator 771 17.3.8.3 Thermal Considerations 773 17.3.9 LTC High-Efficiency, High-Power Buck 775 17.3.9.1 LT1376 High-Frequency, Low Switch 775 17.3.9.2 LTC1148 High-Efficiency Buck 775 17.3.9.2 LTC1148 High-Efficiency Switch 775 17.3.9.2 LTC1148 High-Efficiency Buck 775
Regulator77017.3.8.1LT1074 Positive-to-Negative Polarity Inverter77017.3.8.2LT1074 Negative Boost Regulator77117.3.8.3Thermal Considerations for LT107477317.3.9LTC High-Efficiency, High-Power Buck Regulators77517.3.9.1LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2LTC1148 High-Efficiency Buck with External MOSFET Switches775
17.3.8.1LT1074 Positive-to-Negative Polarity Inverter77017.3.8.2LT1074 Negative Boost Regulator77117.3.8.3Thermal Considerations for LT107477317.3.9LTC High-Efficiency, High-Power Buck Regulators77517.3.9.1LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2LTC1148 High-Efficiency Buck with External MOSFET Switches775
Polarity Inverter
17.3.8.2 LT1074 Negative Boost Regulator77117.3.8.3 Thermal Considerations for LT107477317.3.9 LTC High-Efficiency, High-Power Buck Regulators77517.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches775
17.3.8.3 Thermal Considerations for LT107477317.3.9 LTC High-Efficiency, High-Power Buck Regulators77517.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator77517.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches775
for LT1074
 17.3.9 LTC High-Efficiency, High-Power Buck Regulators
Regulators
17.3.9.1 LT1376 High-Frequency, Low Switch Drop Buck Regulator
Drop Buck Regulator
17.3.9.2 LTC1148 High-Efficiency Buck with External MOSFET Switches 775
with External MOSFET Switches 775
0
17.3.9.4 LTC1148 Line and Load
Regulation
17.3.9.5 LTC1148 Peak Current and Output
Inductor Selection
17.3.9.6 LTC1148 Burst-Mode Operation
for Low Output Current
17.3.10 Summary of High-Power Linear Technology
Buck Regulators 782
17.3.11 Linear Technology Micropower
Regulators 783
17.3.12 Feedback Loop Stabilization 783

			egulator <mark>s</mark> Power Sys			 787
						 787
Refere	ences					 792
Appendix		•••••		•••••	• • • • • • • • •	 793
Bibliograp	ohy .	••••				 797
Index						 807