Contents

In	trodu	ction					
1	Bac	kground					
	1.1	Simplicial categories					
		1.1.1 Simplicial sets					
		1.1.2 Simplicial complexes					
		1.1.3 Simplicial chains					
	1.2	Differential categories					
		1.2.1 Commutative differential graded algebras and					
		the Sullivan model of a space					
		1.2.2 Differential graded Lie algebras and					
		the Quillen model of a space					
		1.2.3 Differential graded coalgebras					
		1.2.4 Differential graded Lie coalgebras					
		1.2.5 A_{∞} -algebras					
	1.3	Model categories					
		1.3.1 Differential model categories					
		1.3.2 Cofibrantly generated model categories					
2	The Quillen Functors \mathcal{L}, \mathcal{C} and their Duals \mathcal{A}, \mathcal{E}						
	2.1	The functors \mathscr{L} and \mathscr{C}					
	2.2	The functors \mathscr{A} and \mathscr{E}					
3	Com	plete Differential Graded Lie Algebras					
	3.1	Complete differential graded Lie algebras					
	3.2	The completion of free Lie algebras					
	3.3	Completion vs profinite completion					
4	Mau	rer–Cartan Elements and the Deligne Groupoid					
	4.1	Maurer–Cartan elements					
	4.2	Exponential automorphisms and					
		the Baker-Campbell-Hausdorff product					
	4.3	The gauge action and the Deligne groupoid					

	4.4	Applications to deformation theory	107			
	4.5	The Goldman–Millson Theorem	109			
5	The	Lawrence–Sullivan Interval	118			
	5.1	Introducing the Lawrence–Sullivan interval	191			
	5.2	The LS interval as a cylinder	121			
	5.3	The flow of a differential equation, the gauge action	122			
		and the LS interval	125			
	5.4	Subdivision of the LS interval and a model of the triangle	120			
	5.5	Paths in a cdgl	120			
	Bibli	iographical notes	150			
6	The Cosimplicial cdgl \mathfrak{L}_{\bullet}					
	6.1	The main result	132			
	6.2	Inductive sequences of models of the standard simplices	134			
	6.3	Sequences of equivariant models of the standard simplices	144			
	6.4	The cosimplicial cdgl \mathfrak{L}_{\bullet}	147			
	6.5	An explicit model for the tetrahedron	148			
	6.6	Symmetric MC elements of simplicial complexes	152			
_	T					
7	The	Model and Realization Functors				
	7.1	A diointness	161			
	79	First features of the global model and realization functors	163			
	7.2	The path components and homotopy groups of $\langle L \rangle$	167			
	7.0	Homological behaviour of C_{x}	172			
	75	The Deligne groupoid of the global model	172			
	1.0	The Delighe groupoid of the global model	111			
8	A Model Category for cdgl					
	8.1	The model category	184			
	8.2	Weak equivalences and free extensions	189			
	8.3	A path object, a cylinder object and homotopy of morphisms	193			
	8.4	Minimal models of simplicial sets	199			
	Bibl	liographical notes	202			
9	The Global Model Functor via Homotony Transfer					
	9.1	The Dupont calculus on $A_{\rm PI}(\Delta^{\bullet})$	204			
	9.2	Obtaining \mathfrak{L}_{\bullet} and \mathfrak{L}_{X} by transfer.	208			
	Bib	liographical notes	211			
		• •				

10	Extracting the Sullivan, Quillen and Neisendorfer Models from the Global Model					
	10.1	Connecting the global model with the Sullivan, Quillen	01.4			
	10.2	From the Lie minimal model to the Sullivan model	214			
	10.3	Coformal spaces	$\begin{array}{c} 217 \\ 220 \end{array}$			
11	The of Re	Deligne–Getzler–Hinich Functor MC _• and Equivalence ealizations				
	$11.1 \\ 11.2$	The set of Maurer-Cartan elements as a set of morphisms Simplicial contractions of $A_{\rm PI}(\Delta^{\bullet})$	224			
	11.3	The Deligne–Getzler–Hinich ∞ -groupoid	231			
	11.4 Bibli	Equivalence of realizations and Bousfield–Kan completion ographical notes	237			
12	Exan	nples	241			
	12.1 12.2	Lie models of 2-dimensional complexes. Surfaces	245			
		Artin groups	253			
	12.3	Lie model of a product	255			
	12.4	Mapping spaces	262			
		12.4.1 Lie models of mapping spaces	263			
		12.4.2 Lie models of free loop spaces	266			
		12.4.4 Simplicial enrichment of cdgl and cdga	207			
		12.4.5 Complexes of derivations and homotopy groups	209			
		of mapping spaces	271			
	12.5	Homotopy invariants of the realization functor	275			
		12.5.1 Action of $\pi_1 \langle L \rangle$ on $\pi_* \langle L \rangle$	276			
		12.5.2 The rational homotopy Lie algebra of $\langle L \rangle$	278			
	D:L1:	12.5.3 Postnikov decomposition of $\langle L \rangle$	280			
	DIDII	ographical notes	281			
Not	tation	Index				
	Gene	ral notation	283			
	Cate	gories	286			
Bib	Bibliography					
Index						