Table of Contents

Page No

		•
1	Introduction	1
1.1	Rationale for human physiology research under microgravity	1
1.1.1	Microgravity on development of life	2
1.1.2	Human organ system response to microgravity	3
1.1.2.1	Musculoskeletal system under microgravity	4
1.1.2.2	Changes in immune system response to microgravity	5
1.1.2.3	Cardiovascular system deconditioning under microgravity	6
1.1.2.4	Nervous system under microgravity	7
1.2.	Gravitational research: Simulating microgravity in a lab	8
1.2.1.	Using 2D Clinostat to simulate microgravity	9
1.2.2.	Usage of Random positioning machine to generate microgravity	9
1.2.3 .	Magnetic levitation as alternate method for simulating microgravity	10
1.2.4.	Mimicking SMG by Parabolic flight (PF)	10
1.3.	Human pluripotent stem cells and gravitational research	11
1.3.1.	Generation of functional cardiomyocytes from hiPSCs in-vitro (hiPSC-	13
	CMs)	
1.4.	Experimental methods to elucidate the effect of SMG on hiPSC-CMs in-	16
	vitro	
1.4.1.	Methods to identify the SMG induced-global changes in hiPSC-CMs	17
1.4.1.1	RNA seq study to monitor global transcriptomics	17
1. 4.1.2 .	SILAC based proteomics to monitor global protein expression	17
1.4.2.	Methods to identify the SMG induced structural and functional alteration	18
1.4.2.1	Immunofluorescence (IF) and transmission electron microscopy (TEM)	18
	to observe morphological changes	

1.4.2.2	Beating profile monitoring by using Real time cell analyser (RTCA)	18
1.4.2.3	Calcium (Ca2+) homeostasis in human cardiomyocytes	20
1.4.2.4	Cardiac calcium homeostasis and electrophysiology	22
1.4.2.5	Cellular oxidative stress and consequences	24
1.4.2.6	Mitochondrial toxicity in response to stress	26
1.4.2.7	Cellular Senescence and aging in response to stress	27
1.4.2.8	Chromosome conformation capture by iHi-C2.0	29
2	Aims and Objectives	32
3	Results	33
3.1	Part-I Parabolic flight-induced acute hypergravity and microgravity leads	33
	to deregulation in genes involved in cardiac differentiation	
3.2	Part-II Parabolic flight-induced acute hypergravity and microgravity	38
	affects the cardiomyocytes beating profile	
3.3	Part-III Transcriptomics, proteomics and functional property assessment	41
	of hiPSC-CMs exposed to (2D Clinostat) SMG	
3.3.1	Transcriptomics profile of hiPSC-CM exposed to SMG	41
3.3.2	Proteomics profile of SMG exposed hiPSC-CM by SILAC method	45
3.3.3	iHi-C2.0 data analysis of hiPSC-CM exposed to SMG	50
3.4	Evaluation of the changes in hiPSC-CMs morphology and functions	55
	post SMG exposure	
3.4.1	Experimental model used for functional observation study under SMG	55
3.4.2	Impact of SMG on the sarcomeric and cytoskeletal structure alignment	57
	in hiPSC-CMs	
3.4.3	Exposure to SMG causes alterations in mitochondrial morphology and	64
	disrupts mitochondrial membrane potential in hiPSC-CMs	
3.4,4	Exposure to SMG disrupts calcium handling and reduces calcium	70
	specific currents in hiPSC-CMs	

3.4.5	Abnormal ROS elevation in hiPSC-CMs post SMG exposure	75
3.4.6	Exposure to SMG induces senescence in hiPSC-CMs	77
4	Discussion	79
4.1	Part-I SMG deregulate linage specific mESCs transcriptome during	79
	random differentiation	
4.2	Parabolic Flight induced global transcriptomics deregulation in mESCs	79
4.2.1	Transcriptome profile of mESCs post Parabolic flight exposure	79
4.2.2	Parabolic flight induced altered gravity impacts on mESCs differentiation abilities	80
4.3	Part-II hiPSC-CMs response to parabolic flight induced acute alteration	81
	in gravity	
4.3.1	Acute and frequent change in gravity by PF alters beating profile of	81
	hiPSC-CMs via stress mediated CICR	
4.4	Part-III hiPSC-CMs exposure to SMG leads to senescence	82
4.4.1	Mitochondrial and cellular stress related transcriptome and proteome	82
	profiles of hiPSC-CMs post SMG	
4.4.2	hiPSC-CMs shows non-significant sarcomeric structural deformities	84
	under SMG	
4.4.3	Mitochondrial bioenergetics, morphology and ROS management	85
	significantly disrupted under SMG	
4.4.4	Deregulation of calcium homeostasis under SMG	85
4.4.5	SMG induced elevation of ROS leads to senescent cardiomyocytes	86
5	Summary	88
6	ZUSAMMENFASSUNG	90
7	Materials and Methods	93

	Materials	93
	Methods	102
8	List of Figures	116
9	List of Tables	118
10	List of Abbreviations	119
11	References	122
12	Appendix	138
1 2 .1	RNA Seq down-regulated gene enriched KEGG pathways	138
12.2	RNA seq up-regulated gene enriched KEGG pathways	138
13	ERKLÄRUNG	139
14	Curriculum Vitae	140