Contents

	facentributors	ix
	RT I Engineering Mammalian Cells to Sense Biologically levant Inputs	
1	Generation of CAR-T Cells by Lentiviral Transduction	3
2	Synthetic Receptors for Sensing Soluble Molecules with Mammalian Cells	15
3	Engineering Mammalian Cells to Control Glucose Homeostasis	35
4	Using Engineered Mammalian Cells for an Epitope-Directed Antibody Affinity Maturation System	59
5	Purification of Specific Cell Populations Differentiated from Stem Cells Using MicroRNA-Responsive Synthetic Messenger RNAs	73
Paf	RT II ENGINEERING MAMMALIAN CELLS TO SENSE ARTIFICIAL INPUTS	
6	Green Light-Controlled Gene Switch for Mammalian and Plant Cells Nils Schneider, Claire V. Chatelle, Rocio Ochoa-Fernandez, Matias D. Zurbriggen, and Wilfried Weber	89
7	Sonogenetic Modulation of Cellular Activities in Mammalian Cells	109
8	Constructing Smartphone-Controlled Optogenetic Switches in Mammalian Cells	125
9	Constructing a Smartphone-Controlled Semiautomatic Theranostic System for Glucose Homeostasis in Diabetic Mice	141
10	Construction of Caffeine-Inducible Gene Switches in Mammalian Cells	159

Part III	Precise Genome Engineering Techniques
Using CR	SPR-Cas Systems

11	Multiplexed Genome Engineering with Casl2a	171
12	Highly Multiplexed Analysis of CRISPR Genome Editing Outcomes in Mammalian Cells	193
13	Optical Control of Genome Editing by Photoactivatable Cas9	225
	T IV Engineering Mammalian Cells in Combination with emical Compounds/Systems	
14	Chemogenetic Control of Protein Localization and Mammalian Cell Signaling by SLIPT	237
15	Engineering Hydrogel Production in Mammalian Cells to Synthetically Mimic RNA Granules	253
16	AgDD System: A Chemical Controllable Protein Aggregates in Cells *Tusuke Miyazaki*	277
17	Intracellular Unnatural Catalysis Enabled by an Artificial Metalloenzyme Yasunori Okamoto and Ryosuke Kojima	287
18	Feeder-Free Human Induced Pluripotent Stem Cell Culture Using a DNA Aptamer-Based Mimic of Basic Fibroblast Growth Factor	301
	RT V New Techniques to Engineer Specific Mammalian lls in a Targeted Manner	
19	Protocol for De Novo Gene Targeting Via In Utero Electroporation Yuji Tsunekawa, Raymond Kunikane Terhune, and Fumio Matsuzaki	309
20	Magnetically Single-Cell Virus Stamping	321
Ina	lex	329