3

## **Contents**

Preface xiii

Abbreviations xv

LiCoO<sub>2</sub> Materials 23

LiMn<sub>2</sub>O<sub>4</sub> Material 26

LiFePO<sub>4</sub> Material 27

LiNiO<sub>2</sub> and Its Derivatives 25

| 1     | Introduction 1                                        |
|-------|-------------------------------------------------------|
| 1.1   | Energy Conversion and Storage: A Global Challenge 1   |
| 1.2   | Development History of Electrochemical Energy Storage |
| 1.3   | Classification of Electrochemical Energy Storage 4    |
| 1.4   | LIBs and ECs: An Appropriate Electrochemical Energy   |
|       | Storage 6                                             |
| 1.5   | Summary and Outlook 10                                |
|       | References 10                                         |
| 2     | Materials and Fabrication 15                          |
| 2.1   | Mechanisms and Advantages of LIBs 15                  |
| 2.1.1 | Principles 15                                         |
| 2.1.2 | Advantages and Disadvantages 16                       |
| 2.2   | Mechanisms and Advantages of ECs 18                   |
| 2.2.1 | Categories 18                                         |
| 2.2.2 | EDLCs 18                                              |
| 2.2.3 | Pseudocapacitor 20                                    |
| 2.2.4 | Hybrid Capacitors 21                                  |
| 2.3   | Roadmap of Conventional Materials for LIBs 22         |
| 2.4   | Typical Positive Materials for LIRs 23                |



2.4.1

2.4.2

2.4.3

2.4.4

| vi   Contents |  |
|---------------|--|
|---------------|--|

| 2.4.5  | Lithium–Manganese-rich Materials 28                |
|--------|----------------------------------------------------|
| 2.4.6  | Commercial Status of Main Positive Materials 28    |
| 2.5    | Typical Negative Materials for LIBs 29             |
| 2.5.1  | Graphite 29                                        |
| 2.5.2  | Soft and Hard Carbon 31                            |
| 2.6    | New Materials for LIBs 33                          |
| 2.6.1  | Nanocarbon Materials 33                            |
| 2.6.2  | Alloy-Based Materials 35                           |
| 2.6.3  | Metal Lithium Negative 39                          |
| 2.7    | Materials for Conventional ECs 39                  |
| 2.7.1  | Porous Carbon Materials 40                         |
| 2.7.2  | Transition Metal Oxides 41                         |
| 2.7.3  | Conducting Polymers 42                             |
| 2.8    | Electrolytes and Separators 42                     |
| 2.8.1  | Electrolytes 42                                    |
| 2.8.2  | Separators 45                                      |
| 2.9    | Evaluation Methods 46                              |
| 2.9.1  | Evaluation Criteria for LIBs 46                    |
| 2.9.2  | Theoretical Gravimetric and Volumetric Energy      |
|        | Density 46                                         |
| 2.9.3  | Practical Energy and Power Density of LIBs 47      |
| 2.9.4  | Cycle Life 48                                      |
| 2.9.5  | Safety 48                                          |
| 2.9.6  | Evaluation Methods for ECs 49                      |
| 2.10   | Production Processes for the Fabrication 50        |
| 2.10.1 | Design 50                                          |
| 2.10.2 | Mixing, Coating, Calendering, and Winding 51       |
| 2.10.3 | Electrolyte Injecting and Formation 51             |
| 2.11   | Perspectives 51                                    |
|        | References 53                                      |
|        |                                                    |
| 3      | Flexible Cells: Theory and Characterizations 67    |
| 3.1    | Limitations of the Conventional Cells 67           |
| 3.1.1  | Mechanical Properties of Conventional Materials 67 |
| 3.1.2  | Limitations of Conventional Architectures 68       |
| 3.1.3  | Limitations of Electrolytes 69                     |

| 3.2   | Mechanical Process for Bendable Cells 69                 |
|-------|----------------------------------------------------------|
| 3.2.1 | Effect of Thickness 70                                   |
| 3.2.2 | Effect of Flexible Substrates and Neutral Plane 71       |
| 3.3   | Mechanics of Stretchable Cells 72                        |
| 3.3.1 | Wavy Architectures by Small Deformation Buckling         |
|       | Process 72                                               |
| 3.3.2 | Wavy Architectures by Large Deformation Buckling         |
|       | Process 74                                               |
| 3.3.3 | Island Bridge Architectures 75                           |
| 3.4   | Static Electrochemical Performance of Flexible Cells 76  |
| 3.5   | Dynamic Performance of Flexible Cells 77                 |
| 3.5.1 | Bending Characterization 78                              |
| 3.5.2 | Stretching Characterization 78                           |
| 3.5.3 | Conformability Test 79                                   |
| 3.5.4 | Stress Simulation by Finite Element Analysis 79          |
| 3.5.5 | Dynamic Electrochemical Performance During               |
|       | Bending 83                                               |
| 3.5.6 | Dynamic Electrochemical Performance During               |
|       | Stretching 85                                            |
| 3.6   | Summary and Perspectives 90                              |
|       | References 90                                            |
| 4     | Flexible Cells: Materials and Fabrication                |
|       | Technologies 95                                          |
| 4.1   | Construction Principles of Flexible Cells 95             |
| 4.2   | Substrate Materials for Flexible Cells 95                |
| 4.2.1 | Polymer Substrates 96                                    |
| 4.2.2 | Paper Substrate 97                                       |
| 4.2.3 | Textile Substrate 98                                     |
| 4.3   | Active Materials for Flexible Cells 98                   |
| 4.3.1 | CNTs 98                                                  |
| 4.3.2 | Graphene 99                                              |
| 4.3.3 | Low-Dimensional Materials 99                             |
| 4.4   | Electrolytes for Flexible LIBs 101                       |
| 4.4.1 | Inorganic Solid-state Electrolytes for Flexible LIBs 102 |
| 4.4.2 | Solid-state Polymer Electrolytes for Flexible LIBs 104   |

| viii | Contents |
|------|----------|
| ,    | 1        |

| 4.5   | Electrolytes for Flexible ECs 104                      |
|-------|--------------------------------------------------------|
| 4.6   | Nonconductive Substrates-Based Flexible Cells 107      |
| 4.6.1 | Paper-Based Flexible Cells 108                         |
| 4.6.2 | Textiles-Based Flexible Cells 112                      |
| 4.6.3 | Polymer Substrates-Based Flexible Cells 117            |
| 4.7   | CNT and Graphene-Based Flexible Cells 121              |
| 4.7.1 | Free-standing Graphene and CNTs Films for SCs 121      |
| 4.7.2 | Free-standing Graphene and CNT Films for LIBs 122      |
| 4.7.3 | Flexible CNTs/Graphene Composite Films for the         |
|       | Cells 125                                              |
| 4.8   | Construction of Stretchable Cells by Novel             |
|       | Architectures 127                                      |
| 4.8.1 | Stretchable Cells Based on Wavy Architecture 127       |
| 4.8.2 | Stretchable Cells Based on Island-Bridge               |
|       | Architecture 129                                       |
| 4.9   | Conclusion and Perspectives 130                        |
| 4.9.1 | Mechanical Performance Improvement 131                 |
| 4.9.2 | Innovative Architecture for Stretchable Cells 132      |
| 4.9.3 | Electrolytes Development 132                           |
| 4.9.4 | Packaging and Tabs 132                                 |
| 4.9.5 | Integrated Flexible Devices 133                        |
|       | References 133                                         |
| _     |                                                        |
| 5     | Architectures Design for Cells with High Energy        |
|       | Density 147                                            |
| 5.1   | Strategies for High Energy Density Cells 147           |
| 5.2   | Gravimetric and Volumetric Energy Density of           |
|       | Electrodes 149                                         |
| 5.3   | Classification of Thick Electrodes: Bulk and Foam      |
|       | Electrodes 151                                         |
| 5.4   | Design and Fabrication of Bulk Electrodes 153          |
| 5.4.1 | Advantages of Bulk Electrodes 153                      |
| 5.4.2 | Low Tortuosity: The Key for Bulk Electrodes 155        |
| 5.5   | Characterization and Numerical Simulation of           |
| F F 3 | Tortuosity 157                                         |
| 5.5.1 | Characterization of Tortuosity by X-ray Tomography 157 |

| 5.5.2  | Numerical Simulation of Tortuosity on Rates by          |
|--------|---------------------------------------------------------|
|        | Commercial Software 158                                 |
| 5.6    | Fabrication Methods for Bulk Electrodes 159             |
| 5.7    | Thick Electrodes with Random Pore Structure 160         |
| 5.7.1  | Pressure-less High-temperature Sintering Process 160    |
| 5.7.2  | Cold Sintering Process 161                              |
| 5.7.3  | Spark Plasma Sintering Technology 162                   |
| 5.7.4  | Brief Summary for Sintering Technologies 165            |
| 5.8    | Thick Electrodes with Directional Pore Distribution 165 |
| 5.8.1  | Iterative Extrusion Method 165                          |
| 5.8.2  | Magnetic-Induced Alignment Method 168                   |
| 5.8.3  | Carbonized Wood Template Method 168                     |
| 5.8.4  | Ice Templates Method 172                                |
| 5.8.5  | 3D-Printing for Thick Electrodes 173                    |
| 5.8.6  | Brief Summary for Bulk Electrodes 175                   |
| 5.9    | Carbon-Based Foam Electrodes with High Gravimetric      |
|        | Energy Density 178                                      |
| 5.9.1  | Graphene Foam 179                                       |
| 5.9.2  | CNTs Foam 181                                           |
| 5.9.3  | CNT/Graphene Foam 181                                   |
| 5.10   | Carbon-Based Thick Electrodes 182                       |
| 5.10.1 | Low Electronic Conductive Material/Carbon Foam 182      |
| 5.10.2 | Large Volume Variation Materials/Carbon Foam 186        |
| 5.10.3 | Compact Graphene Electrodes 188                         |
| 5.10.4 | Summary for Carbon Foam Electrodes 189                  |
| 5.11   | Thick Electrodes Based on the Conductive Polymer        |
|        | Gels 191                                                |
| 5.12   | Summary and Perspectives 193                            |
|        | References 195                                          |
| 6      | Miniaturized Cells 205                                  |
| 6.1    | Introduction 205                                        |
| 6.1.1  | Definition of the Miniaturized Cells and Their          |
|        | Applications 205                                        |
| 6.1.2  | Classification of Miniaturized Cells 206                |
| 6.1.3  | Development Trends of the Miniaturized Cells 207        |
| 6.2    | Evaluation Methods for the Miniaturized Cells 209       |

| 6.2.1  | Evaluation Methods for Electric Double-layer m-ECs 210    |
|--------|-----------------------------------------------------------|
| 6.2.2  | Evaluation methods for m-LIBs and m-ECs 211               |
| 6.3    | Architectures of Various Miniaturized Cells 212           |
| 6.4    | Materials for the Miniaturized Cells 213                  |
| 6.4.1  | Electrode Materials 213                                   |
| 6.4.2  | Electrolytes for the Miniaturized Cells 214               |
| 6.5    | Fabrication Technologies for Miniaturized Cells 215       |
| 6.5.1  | Fabrication of Miniaturized Cells with 2D Parallel Plate  |
|        | Configuration 216                                         |
| 6.6    | Fabrication Technologies for 2D Interdigitated Cells 220  |
| 6.7    | Printing Technologies for 2D Interdigitated Cells 222     |
| 6.7.1  | Advantages of Printing Technologies 222                   |
| 6.7.2  | Classification of Printing Techniques 222                 |
| 6.7.3  | Screen Printing for Miniaturized Cells 224                |
| 6.7.4  | Inkjet Printing 228                                       |
| 6.8    | Electrochemical Deposition Method for 2D Interdigitated   |
|        | Cells 228                                                 |
| 6.9    | Laser Scribing for 2D Interdigitated Cells 231            |
| 6.10   | In Situ Electrode Conversion for 2D Interdigitated        |
|        | Cells 234                                                 |
| 6.11   | Fabrication Technologies for 3D In-plane Miniaturized     |
|        | Cells 236                                                 |
| 6.11.1 | 3D Printing for 3D Interdigitated Configuration Cells 236 |
| 6.11.2 | 3D Interdigitated Configuration by Electrodeposition 239  |
| 6.12   | Fabrication of Miniaturized Cells with 3D Stacked         |
|        | Configuration 240                                         |
| 6.12.1 | 3D Stacked Configuration by Template Deposition 241       |
| 6.12.2 | 3D Stacked Configuration by Microchannel-Plated           |
|        | Deposition Methods 245                                    |
| 6.13   | Integrated Systems 247                                    |
| 6.14   | Summary and Perspectives 249                              |
|        | References 250                                            |
|        |                                                           |
|        |                                                           |

## 7 Smart Cells 263

- 7.1 Definition of Smart Materials and Cells 263
- 7.1.1 Definition of Smart Cells 263

| 7.1.2 | Definition of Smart Materials 263                  |
|-------|----------------------------------------------------|
| 7.2   | Type of Smart Materials 264                        |
| 7.2.1 | Self-healing Materials 264                         |
| 7.2.2 | Shape-memory Alloys 265                            |
| 7.2.3 | Thermal-responding PTC Thermistors 266             |
| 7.2.4 | Electrochromic Materials 267                       |
| 7.3   | Construction of Smart Cells 268                    |
| 7.3.1 | Self-healing Silicon Anodes 268                    |
| 7.3.2 | Aqueous Self-healing Electrodes 271                |
| 7.3.3 | Liquid-alloy Self-healing Electrode Materials 273  |
| 7.3.4 | Thermal-responding Layer 274                       |
| 7.3.5 | Thermal-responding Electrodes Based on the PTC     |
|       | Effect 276                                         |
| 7.3.6 | Ionic Blocking Effect-Based Thermal-responding     |
|       | Electrodes 278                                     |
| 7.4   | Application of Shape-memory Materials in LIBs and  |
|       | ECs 280                                            |
| 7.4.1 | Self-adapting Cells 280                            |
| 7.4.2 | Shape-memory Alloy-Based Thermal Regulator 281     |
| 7.5   | Self-heating and Self-monitoring Designs 282       |
| 7.5.1 | Self-heating 283                                   |
| 7.5.2 | Self-monitoring 285                                |
| 7.6   | Integrated Electrochromic Architectures for Energy |
|       | Storage 286                                        |
| 7.6.1 | Integration Possibilities 286                      |
| 7.6.2 | Integrated Electrochromic ECs 287                  |
| 7.6.3 | Integrated Electrochromic LIBs 289                 |
| 7.7   | Summary and Perspectives 291                       |
|       | References 292                                     |

Index 301