TABLE OF CONTENTS

1. INTRODUCTION1
1.1 Progress in photoredox catalysis1
1.2 General visible-light-catalyst2
1.3 Mechanism of photoredox catalysis
1.4 Electron donor-acceptor (EDA) complexes concept7
1.5 Advances in C-Se bond formation research in photochemistry11
1.6 Advances in arene C-B bond formation research in photochemistry18
2. PHOTOCHEMICAL SYNTHESIS OF SELENIDES24
2.1 Introduction
2.2 Results and discussion
2.2.1 Initial study and hypothesis
2.2.2 Reaction optimization
2.2.3 Scope of the photochemical synthesis of seleno-compounds31
2.2.4 Scope of the photochemical synthesis of chiral α -selenoamino acids35
2.2.5 Scale up photoinduced selenation
2.3 Reaction mechanism study
2.3.1 Deuterium experiment
2.3.2 Control experiment
2.3.3 Radical clock experiment
2.3.4 Time course experiment
2.4 Conclusion
3. PHOTOINDUCED DETHIOPHENATIVE BORYLATION OF AROMATIC
RINGS
3.1 Introduction
3.2 Result and discussion47
3.2.1 Initial study and hypothesis47
3.2.2 Reaction optimization
3.2.3 Scope of the photoinduced borylation reaction50

3.3 Reaction mechanism study	
3.3.1 UV-Vis absorption	
3.3.2 Radical clock experiment	53
3.3.3 Proposed reaction pathway	54
3.4 Outlook	56
3.5 Conclusion	57
4. SUMMARY	58
5. EXPERIMENTAL DATA	60
5.1 General information	60
5.2 Experimental data	61
5.2.1 Photochemical synthesis of selenides	61
5.2.2 Photoinduced borylation of aromatic rings	103
6. ABBREVIATIONS	118
7. REFERENCES	120