Contents

Preface v				
1	Earth Observations			
	1.1	Weather and Climate Records	1 4	
	1.2	Satellite Observations Since 1979	7	
	1.3	Circulation Patterns of the Atmosphere	11	
	1.4	Circulation Patterns of the Ocean	16	
	1.5	The Coupled Climate System	19	
2	Geophysical Flow			
	2.1	Introduction	27	
	2.2	Governing Equations for Mass and Momentum	28	
	2.3	Primitive Equation Formulations for Stratified, Rotating Flow	31	
	2.4	The Geostrophic Wind Approximation	34	
	2.5	The Hydrostatic Approximation for a Perfect Fluid Atmosphere	35	
	2.6	Shallow Water Equations and Barotropic Vorticity	38	
	2.7	Geophysical Turbulence	42	
	2.8	Thermodynamics	49	
	2.9	The Model Description of the Community Climate System Model .	53	
	2.10	The Butterfly Effect	54	
3	Numerical Methods of Climate Modeling			
	3.1	Introduction	57	
	3.2	Basic Equations with the Control Volume Method	58	
	3.3	Time Integration	67	
	3.4	The Semi-Lagrangian Transport Method	73	
	3.5	Galerkin Spectral Methods	83	
	3.6	Continuous Galerkin Spectral Element Method	97	
	3.7	Vorticity Preserving Method on an Unstructured Grid	101	
	3.8	Baroclinic Models and the Discrete Vertical Coordinate	106	
	3.9	Algorithms for Parallel Computation	110	
4	Climate Simulation			
	4.1	What We Have Learned from Climate Simulations	119	
	4.2	Case Study: Paleoclimate Simulations	119	
	4.3	Other Paleoclimate Conclusions	121	
	4.4	Increased Greenhouse Gas Concentrations	121	
	4.5	Case Study: Peter Lawrence Answers Pielke on Land Use	122	
	4.6	How to Define a Simulation	123	

Contents
0011001100

4.7	What Climate Models Are and Are Not	124		
5 Clin	Climate Analysis			
5.1	Introduction	127		
5.2	Approximation of Functions on the Sphere	127		
5.3	Spectral Analysis			
5.4	EOF Analysis	133		
5.5	Canonical Correlation Analysis of Climate Time Series	136		
5.6	Stochastic Dynamical System Approximation	138		
5.7	Data Assimilation	141		
5.8	Uncertainty Quantification	143		
5.9	Downscaling and Impact analysis	145		
Conclusions				
Bibliography				
Index				