Contents

Preface		ix
I	Asymptotic methods solve algebraic and differential equations	1
1	Perturbed algebraic equations solved iteratively	5
2	Power series solve ordinary differential equations	33
3	A normal form of oscillations illuminates their character	63
Part I Summary		107
II	Center manifolds underpin accurate modeling	109
4	The center manifold emerges	113
5	Construct slow center manifolds iteratively	169
Part II Summary		217
ш	Macroscale spatial variations emerge from microscale dynamics	219
6	Conservation underlies mathematical modeling of fluids	223
7	Cross-stream mixing causes longitudinal dispersion along pipes	243
8	Thin fluid films evolve slowly over space and time	271
9	Resolve inertia in thicker faster fluid films	295
Part III Summary		315
IV	Normal forms illuminate many modeling issues	317
10	Normal-form transformations simplify evolution	323
11	Separating fast and slow dynamics proves modeling	341

1 2	Appropriate initial conditions empower accurate forecasts	377
13	Subcenter slow manifolds are useful but do not emerge	405
Part IV Summary		441
V	High-fidelity discrete models use slow manifolds	443
14	Introduce holistic discretization on just two elements	447
15	Holistic discretization in one space dimension	471
Part V Summary		
VI	Hopf bifurcation: Oscillations within the center manifold	507
16	Directly model oscillations in Cartesian-like variables	511
17	Model the modulation of oscillations	529
Part VI Summary		567
VII stoc	Avoid memory in modeling nonautonomous systems, including hastic	569
18	Averaging is often a good first modeling approximation	575
19	Coordinate transforms separate slow from fast in nonautonomous dynamics	585
20	Introducing basic stochastic calculus	625
21	Strong and weak models of stochastic dynamics	685
Part VII Summary		721
Bibliography		725
Index		743