Contents

1. Parameter optimization problems

	1.1	Problems without constraints	1
	1.2	Problems with equality constraints; necessary conditions for a stationary point	2
	1.3	Problems with equality constraints; sufficient conditions for a local minimum	9
	1.4	Neighboring optimum solutions and the interpretation of the Lagrange multipliers	18
	1.5	Numerical solution by a first-order gradient method	19
	1.6	Numerical solution by a second-order gradient method	21
	1.7	Problems with inequality constraints	24
	1.8	Linear programming problems	29
	1.9	Numerical solution of problems with inequality constraints	36
	1.10	The penalty function method	39
2.	Optin	nization problems for dynamic systems	
	2.1	Single-stage systems	42
	2.2	Multistage systems; no terminal constraints, fixed number of stages	43
	2.3	Continuous systems; no terminal constraints, fixed terminal time	47
	2.4	Continuous systems; some state variables specified at a fixed terminal time	55
	2.5	Continuous systems with functions of the state variables prescribed at a fixed terminal time	65
	2.6	Multistage systems; functions of the state variables specified at the terminal stage	69

	2.7	Continuous systems; some state variables specified at an unspecified terminal time (including minimum-time problems)	71
	2.8	Continuous systems; functions of the state variables specified at an unspecified terminal time, including minimum-time problems)	87
3.	Opti	mization problems for dynamic systems	
	with	path constraints	
	3.1	Integral constraints	90
	3.2	Control variable equality constraints	95
	3.3	Equality constraints on functions of the control and state variables	99
	3.4	Equality constraints on functions of the state variables	100
	3.5	Interior-point constraints	101
	3.6	Discontinuities in the system equations at interior points	104
	3.7	Discontinuities in the state variables at interior points	106
	3.8	Inequality constraints on the control variables	108
	3.9	Linear optimization problems; "bang-bang" control	110
	3.10	Inequality constraints on functions of the control and state variables	117
	3.11	Inequality constraints on functions of the state variables	117
	3.12	The separate computation of arcs in problems with state variable inequality constraints	124
	3.13	Corner conditions	125
4.	Opti	mal feedback control	

3.

	4.1	The extremal field approach	128
	4.2	Dynamic programming; the partial differential equation for the optimal return function	131
	4.3	Reducing the dimension of the state space by use of dimensionless variables	141
5.	Line line	ear systems with quadratic criteria: ar feedback	
	5.1	Terminal controllers and regulators; introduction	148
	5.2	Terminal controllers; quadratic penalty function on terminal error	148
	5.3		110
		Terminal controllers; zero terminal error and controllability	158

6. Neighboring extremals and the second variation

6.1	Neighboring extremal paths (final time specified)	177
6.2	Determination of neighboring extremal paths by the backward sweep method	179
6.3	Sufficient conditions for a local minimum	181
6.4	Perturbation feedback control (final time specified)	193
6.5	Neighboring extremal paths with final time unspecified	197
6.6	Determination of neighboring extremal paths by the backward sweep method with final time unspecified	199
6.7	Sufficient conditions for a local minimum with final time unspecified	201
6.8	Perturbation feedback control with final time unspecified	202
6.9	Sufficient conditions for a strong minimum	205
6.10	A multistage version of the backward sweep	208
6.11	Sufficient conditions for a local minimum for multistage systems	211

7. Numerical solution of optimal programming and control problems

	•	
7.1	Introduction	212
7.2	Extremal field methods; dynamic programming	214
7.3	Neighboring extremal algorithms	214
7.4	First-order gradient algorithms	221
7.5	Second-order gradient algorithms	228
7.6	A quasilinearization algorithm	234
7.7	A second-order gradient algorithm for multistage systems	236
7.8	A conjugate-gradient algorithm	237
7.9	Problems with inequality constraints on the control variables	240
7.10	Problems with inequality constraints on the state variables	242
7.11	Mathemetical programming approach	243

8. Singular solutions of optimization and control problems

8.1	Introduction	246
8.2	Singular solutions of optimization problems for linear dynamic systems with quadratic criteria	247
8.3	Singular solutions of optimization problems for nonlinear dynamic systems	252

8.4	A generalized convexity condition for singular arcs	257
8.5	Conditions at a junction	261
8.6	A resource allocation problem involving inequality constraints and singular arcs	262

9. Differential games

9.1	Discrete games	271
9.2	Continuous games	274
9.3	Differential games	277
9.4	Linear-quadratic pursuit-evasion games	282
9.5	A minimax-time intercept problem with bounded controls	289
9.6	A discussion of differential games	293

10. Some concepts of probability

	10.1	Discrete-valued random scalars	296
	10.2	Discrete-valued random vectors	297
	10.3	Correlation, independence, and conditional probabilities	299
	10.4	Continuous-valued random variables	300
	10.5	Common probability mass functions	303
	10.6	Common probability density functions	306
	10.7	Gaussian density function for a random vector	309
11.	Intro	oduction to random processes	

11.1	Random sequences and the markov property	315
11.2	Gauss-markov random sequences	320
11.3	Random processes and the markov property	326
11.4	Gauss-markov random processes	328
11.5	Approximation of a gauss-markov process by a gauss-markov sequence	342
11.6	State variables and the markov property	344
11.7	Processes with independent increments	346

12. Optimal filtering and prediction

12.1	Introduction	348
12.2	Estimation of parameters, using weighted least-squares	349
12.3	Optimal filtering for single-stage linear transitions	359
12.4	Optimal filtering and prediction for linear multistage	
	processes	360

12.5	Optimal filtering for continuous linear dynamic systems with continuous measurements	364
12.6	Optimal filtering for nonlinear dynamic processes	373
12.7	Estimation of parameters using a Bayesian approach	377
12.8	Bayesian approach to optimal filtering and prediction for multistage systems	382
12.9	Detection of gaussian signal in noise	388

13. Optimal smoothing and interpolation

13.1	Optimal smoothing for single-stage transitions	390
13.2	Optimal smoothing for multistage processes	393
13.3	Optimal smoothing and interpolation for continuous processes	395
13.4	Optimal smoothing for nonlinear dynamic processes	400
13.5	Sequentially-correlated measurement noise	400
13.6	Time-correlated measurement noise	405

14. Optimal feedback control in the presence of uncertainty

14.1	Introduction	408
14.2	Continuous linear systems with white process noise and perfect knowledge of the state	408
14.3	Continuous linear systems with process and measurements containing additive white noise; the certainty-equivalence principle	414
14.4	Average behavior of an optimally controlled system	416
14.5	Synthesis of regulators for stationary linear systems with stationary additive white noise	418
14.6	Synthesis of terminal controllers for linear systems with additive white noise	422
14.7	Multistage linear systems with additive purely random noise; the discrete certainty-equivalence principle	428
14.8	Optimum feedback control for nonlinear systems with additive white noise	432

Appendix A-Some basic mathematical facts

A1	Introduction	438
A2	Notation	438
A3	Matrix algebra and geometrical concepts	441
A4	Elements of ordinary differential equations	448

Appendix B-Properties of linear systems

B1	Linear algebraic equations	455
B2	Controllability	455
B3	Observability	457
B4	Stability	458
B5	Canonical transformations	459
Reference	462	
Multiple-	467	
Index	477	