Arman T. Askari • Adrian W. Messerli Editors

Cardiovascular Hemodynamics

An Introductory Guide

Second Edition

💥 Humana Press

Contents

Par	t I Components of Myocardial Performance
1	Preload
2	Afterload 23 Amanda R. Vest 23
3	Contractility
4	Cardiac Output
Par	t II Effects of Selected Interventions on CV Hemodynamics
5	Renin-Angiotensin-Aldosterone Axis Modulators and OtherVasodilators61
	Chirag Bavishi, Roberto Ramirez, and Franz H. Messerli
6	Beta Blockers and Calcium Channel Blockers
7	Pressor Agents, Pure Inotropes, Mixed Function Agents 89 Paul Anaya and Tracy E. Macaulay
8	Recently Approved Pharmacologic Agents to Improve Outcomes in Heart Failure
9	Mechanical Circulatory Support
Par	t III Methods of Hemodynamic Evaluation
10	Key Clinical Findings
11	Echocardiography

12	CT and MRI Cardiovascular Hemodynamics
13	Objective Evaluation of Hemodynamics in the Outpatient Setting
14	Cardiac Catheterization: Right- and Left-Heart Catheterization
Part	t IV Specific Hemodynamically Compromised Situations
15	Tamponade237Olcay Aksoy, Begum Sezer, and Leonardo Rodriguez
16	Constrictive Pericarditis and Restrictive Cardiomyopathy 251 Chun Pong Wong and Allan Klein
17	Valvular Heart Disease
18	Pulmonary Hypertension
19	Acute Decompensated Heart Failure
20	Intracardiac Shunts
21	Shock
22	Intracoronary Hemodynamics
Inde	x.

List of Figures

Fig. 1.1	Factors determining preload. (From Norton [1])
Fig. 1.2	The cardiac cycle. (From Wikipedia: DanielChangMD
	revised original work of DestinyQx; Redrawn as Xavax)5
Fig. 1.3	Average pressures within the chambers and great vessels of
-	the heart. (From Iaizzo [48])
Fig. 1.4	Example of a typical central venous pressure waveform.
•	(From Atchabahian and Gupta [49]). The base of the "c"
	wave represents the onset of right ventricular contraction
	and is therefore the best estimate of the final right
	ventricular filling pressure and preload
Fig. 1.5	Characteristic intracardiac pressure waveforms derived
U	from the pulmonary artery catheter. (From Anesthesia UK,
	frca.co.uk)
Fig. 1.6	Example of a typical pulmonary capillary wedge pressure
U	waveform. (From The ABCs of A to V: Right Atrial/Left
	Atrial (PCW) Pressures, CathLabDigest.com). Note the
	occurrence of the " a " wave of left atrial contraction shortly
	after the electrocardiographic "P" wave and the occurrence
	of the " v " wave after the electrocardiographic "T" wave.
	The " ν " wave falling after the "T" wave can be of help
	when distinguishing a prominent " v " wave in pulmonary
	capillary wedge profile from the systolic deflection of a
	pulmonary artery waveform, which occurs before the "T"
	wave and means the catheter is not in the wedge position
Fig. 1.7	Examples of two patients with similar left ventricular
1.18	end-diastolic pressures, but differing pulmonary capillary
	wedge pressures, with patient 1 showing better left atrial
	compensation for the elevated LVEDP
	(From Reddy et a) [50]) 12
Fig 18	Pressure-volume loon for a single cardiac cycle
1 15. 1.0	(From Loushin et al. [57]) 13
Fig 19	Effects of acutely increasing preload on the pressure_volume
1 Ig. 1.7	loop to the point of maximal preload on the pressure-volume
	[52] and Kanlan [53]). When the ventricle reaches the limit
	of preload reserve it is unable to distend any further and the
	preload is fixed, at this point (loop 4), any further increases
	in afterload will load to a reduction in starks we have 14
	In anerioad will lead to a reduction in stroke volume

xviii

Fig. 2.1	The inverse relationship between afterload and cardiac
	performance. (Adapted from Sagawa [31])
Fig. 2.2	Pressure-diameter relations for elastic and muscular
	arteries. (From Nichols and Edwards [5])
Fig. 2.3	The effects of wave reflection on the systolic pressure
	profile. (From Chirinos and Sweitzer [32]). Wave
	separation analysis showing the contributions of the
	forward (green dashed line) and backward (red dotted line)
	pressure waves to the systolic pressure profile
Fig. 2.4	Factors determining afterload. (From Norton [33])
Fig. 2.5	Effects of acutely increasing afterload on the pressure-
U	volume loop A mitral valve opens, B mitral valve
	closure, C aortic valve opens, D aortic valve closure,
	e end-systolic pressure-volume relationship, f end-
	diastolic pressure-volume relationship (or ventricular
	elastance). The dotted loop represents the effect of
	increasing afterload. Panel b demonstrates the impact of
	afterload plus (dotted loop) increased preload, increased
	end-diastolic volume, and therefore preservation of stroke
	volume. (From Iaizzo [19])
Fig. 2.6	The pressure-volume relationship and elastance. Increased
-	elastance, as illustrated by the steeper diagonal slope,
	leads to smaller stroke volume. (From Bashore [35])
Fig. 2.7	Conditions for afterload mismatch in systolic heart failure.
	(From Ross [15]). The stroke volume is seen to decrease
	(decreased width of the pressure-volume loop) as afterload
	increases
Fig. 3.1	Left ventricular pressure curves with tangents drawn to the
	steepest portions of the ascending limbs to indicate
	maximal dP/dt values. Red: Control. Blue: Hyperdynamic
	heart, as with norepinephrine administration. Black:
	Hypodynamic heart, as in cardiac failure. (Adapted from
	Berne and Levy [1], p. 313, Fig. 16.9)
Fig. 3.2	Left atrial, aortic, and left ventricular pressure pulses
	correlated in time with aortic flow, ventricular volume,
	heart sounds, venous pulse, and the electrocardiogram for a
	complete cardiac cycle. (Adapted from Berne and Levy [2],
	p. 313, Fig. 16.10)43
Fig. 3.3	Schematic diagram of the movements of calcium in
	excitation-contraction coupling in cardiac muscle. The
	influx of calcium (Ca ²⁺) from the interstitial fluid during
	excitation triggers the release of Ca ²⁺ from the sarcoplasmic
	reticulum. The free cytosolic Ca ²⁺ activates contraction of
	the myofilaments (systole). Relaxation (diastole) occurs as
	a result of uptake of Ca^{2+} by the sarcoplasmic reticulum, by
	extrusion of intracellular Ca^{2+} by Na^+ – Ca^{2+} exchange, and
	to a limited degree by the Ca^{2+} pump. (Adapted from Berne
	and Levy [2], p. 365)

Fig. 3.4	Organization of the thin filament in both the relaxed and
	excited states. In the relaxed state, the myosin-binding site
	on actin is covered by the troponin-tropomyosin complex.
	In the presence of elevated calcium (Ca ²⁺), the troponin
	tropomyosin complex is pulled away from the myosin-
	binding site when Ca ²⁺ binds to troponin, allowing the
	myosin cross-bridge to interact with actin. Hydrolysis of
	ATP causes a conformational change in the myosin
	molecule, which pulls the actin filament toward the center
	of the sarcomere. A new ATP binds to myosin causing the
	release of the cross-bridge. If Ca^{2+} levels are still elevated.
	the cycle repeats. If Ca^{2+} are low, relaxation results
Fig 41	Relationship between cardiac output preload and
1.9	contractility (SV stroke volume <i>LVEDP</i> left ventricular
	end-diastolic pressure a measure of preload) (Adapted
	from http://scisense.com/education/cv_application.html) 57
Fig 12	Thermodilution cardiac output curves (Adapted from
1 1g. 4.2	Braunwold et al. [3]) 55
Fig 51	The ranin angiotencin aldestarone system Machanism of
1 ig. 5.1	action of ACEIa ABBa and DBIa
Fig 50	Moon left ventrievier pressure volume loope at begeline and
Fig. <i>3.2</i>	Wear in potients rendemized to placebe (penal A) and to
	I year in patients randomized to praceoo (panel A) and to
	enalapril (panel B) in SOLVD Irial. At 1 year, there was a
	inglaward shift in placebo group and leftward shift in
	enalapril group. (Reprinted from Konstam et al. with
E:- 52	permission of the publisher)
rig. 3.3	Plots showing ascending aorta pressure waveforms (top)
	along with their forward (bottom left) and backward
	(bottom right) components in a representative normotensive
	(solid line) and hypertensive patient (dashed line). After
	captopril infusion (dotted line), attenuation of the higher
	backward wave and prominent late systolic peak in
	hypertensive patient was seen. (Reprinted from Ting et al.
T)' 7 4	with permission of the publisher)
Fig. 5.4	Sequential left ventricular pressure-volume loops after
	administration of sodium nitroglycerine showing with
	leftward and downward shift due to changing loading
	conditions. (Reprinted from McKay et al. with permission
	of the publisher)
Fig. 5.5	Schematic diagram of mechanism of action of hydralazine
	and Isosorbide dinitrate
Fig. 6.1	Evolution of CCBs
Fig. 6.2	Effect of CCBs on hemodynamics
Fig. 6.3	Odds ratios for fatal and nonfatal stroke (left) and fatal and
	nonfatal myocardial infarction (right) in relation to
	corresponding differences in systolic blood pressure. Odds
	ratios were calculated for the amlodipine group vs placebo or
	other classes of antihypertensive drugs including ARBs

(dots) or for the angiotensin receptor group vs placebo or other classes of antihypertensive drugs including amlodipine (squares). Blood pressure differences were obtained by subtracting the mean change in the amlodipine or ARB group from the corresponding mean change in the reference group. When a group of trials was pooled, the blood pressure difference was calculated by averaging the between-group blood pressure difference within each trial with the number of randomly assigned patients as weighting factor. Positive values indicate tighter blood pressure control in the experimental group. The regression line was drawn for trials involving an amlodipine group and weighted by the inverse Fig. 7.1 The Frank-Starling curve as it applies in cardiac hemodynamics depicts the relationship between preload The effects of afterload and intrinsic LV contractility on the Fig. 7.2 Fig. 7.3 The pressure-volume relation depicts the volumetric and pressure changes that occur through a single cardiac cycle. As is illustrated, the phases of the cardiac cycle include diastole (or filling phase) which begins at the time of mitral valve opening, isovolumetric contraction defined as the time from mitral valve closure until aortic valve opening, systole (or ejection phase) which begins at the time of aortic valve opening, and isovolumetric relaxation defined by the time between aortic valve closure until mitral valve opening heralds the next diastolic phase. Stroke volume is defined as the difference between the volume contained within the ventricle at end diastole and the volume By altering preload, a series of pressure-volume loops can Fig. 7.4 be generated. These can be used to define ventricular end-systolic elastance (LV Ees). This end-systolic pressure-volume linear relation is generally accepted as a measure of LV contractility with steeper slopes indicating greater contractility and less steep slopes indicating reduced contractility. Similarly, a linear relationship between the end-systolic pressure-volume point and the end-diastolic pressure-volume point defines arterial elastance (Ea) from which the LV afterload is derived. Black = diastolic and systolic phases of the cardiac cycle; blue = isovolumetric phases; red = LV elastance (LV contractility); green = arterial elastance (afterload)91 Hemodynamic effects of vasodilators. A reduction in Fig. 7.5 afterload is depicted as a downward shift in the arterial elastance $(E_{a1} \rightarrow E_{a2})$ and a decrease in the end-systolic pressure. This results in an increase in the stroke volume

(SV2 > SV1). Vasodilators do not affect the LV contractility. Black = baseline hemodynamic profile; Fig. 7.6 The hemodynamic effect of inotropes. The net effect is a leftward shift in the end-systolic pressure-volume relation (LV end-systolic elastance ($E_{es1} \rightarrow E_{es2}$)) indicating augmented contractility, which results in improved cardiac performance as indicated by the increased stroke volume (SV2 > SV1). Black = baseline hemodynamic profile; Fig. 7.7 Hemodynamics of catecholamine vasopressor agents. The actions of catecholaminergic vasopressors result in improved contractile function denoted by the slightly leftward shift in the end-systolic pressure-volume relation $(E_{es1} \rightarrow E_{es2})$. However, the dominant effect from these agents is peripheral vasoconstriction leading to an increase in afterload ($E_{a2} > E_{a1}$). Depending on the inotropic effect that these agents confer in comparison to the increased afterload, stroke volume might be expected to increase although to a lesser extent as compared to pure inotropic agents, remain unchanged, or in the setting of an overwhelming increase in afterload, actually decrease (SV1 \approx SV2). These agents are therefore best suited in cases of vasodilatory shock where their effect in maintaining adequate tissue perfusion pressure is required. Black = baseline hemodynamic profile; red = vasopressor effect; pink = arterial elastance (afterload) at baseline; Fig. 7.8 Hemodynamics of pure vasoconstrictors. These agents act primarily to increase the systemic vascular resistance resulting in an upward shift of the pressure-volume relationship. The increase in afterload does not affect intrinsic contractile function but does result in an increase in the end-systolic blood pressure, increased LV end-diastolic pressure, and an increase in the LV afterload $(E_{a1} \rightarrow E_{a2})$. The combined effects result in elevated myocardial oxygen demand and a reduced stroke volume (SV2 < SV1). Therefore, while systemic blood pressure is improved, it comes at the expense of the cardiac output. Black = baseline hemodynamic profile; red = vasoconstrictor effect; pink = arterial elastance (afterload) at baseline; blue = arterial elastance (afterload) Fig. 8.1 Angiotensin receptor-neprilysin inhibitors have the potential to modulate two counter-regulatory neurohormonal systems in HF: the renin-angiotensin-aldosterone system and natriuretic peptide system. ANG angiotensin, AT1 angiotensin type 1, HF heart failure, NP natriuretic

peptide, RAAS renin-angiotensin-aldosterone system. (Indian Heart Journal Volume 70, Supplement 1, July 2018, Ivabradine's primary mechanism of action on cardiac tissue Fig. 8.2 is on the sinoatrial (SA) node, which occupies a predominantly subepicardial position at the junction of the superior vena cava (SVC) and the right atrium (RA). (a) Heart with position of the Sinoatrial (SA) node. (b) In the sinoatrial node, ivabradine blocks the intracellular aspect of the hyperpolarization-activated cyclic nucleotide-gated (HCN) transmembrane channel, which is responsible for the transport of sodium (Na⁺) and potassium (K⁺) ions across the cell membrane, in the open state. This results in the inhibition of the inward funny current (I_f) , which is specifically activated at hyperpolarized membrane potentials. (c) By selectively inhibiting I_f , there is a reduction in the slope of diastolic depolarization of the pacemaker action potential (shaded region) and an increase in the duration of diastole, without altering other phases of the action potential. This results in heart rate reduction. Ao aorta, IVC inferior vena cava, PA pulmonary artery, RV right ventricle. (PMID:28958335)110 Fig. 8.3 Approval timeline of ivabradine across Europe and the United States. The indications for the use of ivabradine have evolved over time and differ based on region. Since it was first approved for use in angina by the European Medicines Agency (EMA) in 2005, the findings of several randomized controlled trials have resulted in expanded indications to include select heart failure patients and only recent approval by the US Food and Drug Administration (FDA) for this indication. BEAUTIFUL Morbidity-Mortality Evaluation of the Ir-Inhibitor Ivabradine in Patients With Coronary Disease and Left Ventricular Dysfunction, CAD coronary artery disease, CV cardiovascular, HFrEF heart failure with reduced ejection fraction, LVEF left ventricular ejection fraction, MI myocardial infarction, NYHA New York Heart Association, NSR normal sinus rhythm, SHIFT Systolic Heart Failure Treatment with the I-Inhibitor Ivabradine Trial, SIGNIFY Study Assessing the Morbidity-Mortality Benefits of the Ir-Inhibitor Ivabradine in Patients With Coronary Artery Disease. (PMID:28958335)112 Kaplan-Meier cumulative event curves for different end Fig. 8.4 points in SHIFT. Primary composite outcome (Panel A); cardiovascular mortality or heart failure hospitalization and its two components cardiovascular mortality (Panel B); heart failure hospitalizations (Panel C) and heart failure deaths (Panel D) in the ivabradine and the placebo arms.

	CV cardiovascular, HF heart failure, SHIFT Systolic Heart Failure Treatment with the I_{Γ} -Inhibitor Ivabradine Trial. (Swedberg et al.; SHIFT Investigators. Lancet.
Fig. 9.1	2010;376:875–885)113 Cardiogenic shock paradigm. Red indicates the effects of
	inflammatory pathways (Reproduced with permission from Judith Hochman and Harrison's Principles of Internal
$E_{\alpha} = 0.2$	Medicine)
FIg. 9.2	(a) The standard pressure-volume loop for a normal near is shown. The process from point A to point B represents
	isovolumic contraction where pressure increases without a
	change in volume. The aortic valve opens at B and ejection
	occurs with a drop in volume. Ejection occurs until point C
	when the aortic valve closes, which is followed by isovolu-
	mic relaxation to point D. The mitral valve opens at point D and the left ventricle fills (b) In an acute insult, the systelic
	function of the heart weakens and the ESPVR decreases in
	slope. This results in a smaller volume of ejection and
	dilation of the ventricle overall. (c) Highlights the
	components of the pressure-volume area (PVA), which is
	made up of the stroke work (SW) and the potential energy
	(PE). (d) Shows the change in PE and SW when there is an
	acute insult to the heart. (Adapted from Uriel et al. JACC 2018 with normination [2])
Fig 93	(a and b) The Intra-aortic balloon nump is peripherally
112. 7.5	inserted in the descending aorta under fluoroscopy. It
	inflates during diastole and deflates during systole.
	(c) Diagram of the IABP's effects on systemic blood
	pressure. When the balloon inflates during diastole, it
	augments the diastolic pressure, ideally above the
	normal (unassisted) systolic pressure. Then, with
	deflation during systole, the systolic pressure is
	referred to as the assisted systolic pressure (d)
	Pressure-volume loop with insertion of the IABP is
	shown in green. Note that with reduction in the
	afterload, the aortic valve opens at a lower pressure and
	there is greater volume of ejection. (Reproduced with
_	permission from Briceno et al. [8])
Fig. 9.4	(a and b) The Impella is inserted fluoroscopically across
	the aortic valve. (c) The impella directly unloads the Lv
	(numle) reflects the unloading of the Impella, as the
	left ventricular end-diastolic volume significantly
	decreases. Note that the loop reflects a lower LV stroke
	volume; however, overall global cardiac output is supported
	by the Impella. (Reproduced with permission from Briceno
	et al. [8])

Fig. 9.5	(a and b) The TandemHeart is placed percutaneously under fluorescopic guidance. (c) The inlet cannula advances up
	the femoral vein to the right atrium, and crosses to the left
	atrium where it drains blood and reduces LV preload
	(d) Hemodynamic benefits include reduction in preload and
	reduction in the left ventricular end-systolic volume. Note
	that the TandemHeart increases afterload on the LV by
	delivering blood to the femoral artery (Reproduced with
	permission from Briceno et al [8])
Fig 96	(a) The CentriMag is a high flow centrifugal nump (b) The
1 16. 7.0	CentriMag can pump blood from the right atrium to the
	pulmonary artery or the left atrium to the aorta. Other
	configurations are possible. (Images reproduced with
	permission from Abbott Laboratories)
Fig. 9.7	Three possible configurations for VA ECMO. The heart
- 0	pump and the oxygenator connect a venous inflow to an
	arterial outflow. Configurations include (\mathbf{a}) femoral vein to
	femoral artery, (b) right atrium to aorta ("central cannula-
	tion"), or (c) right internal jugular vein to right subclavian
	artery. (Reproduced with permission from Rao et al. [23]) 125
Fig. 9.8	Effect of an LV vent on LV hemodynamics. The vent
	reduces LV end-diastolic volume and also reduces end-
	systolic pressure. (Reproduced with permission from Kapur
	et al. [25])
Fig. 9.9	North-South syndrome or Harlequin syndrome.
	Oxygenated blood from the ECMO circuit mixes with
	deoxygenated blood from the LV. If this mixing occurs
	distal to the aortic arch, oxygen to the upper extremities
	and head can be compromised (Reproduced with permis-
	sion from Rao et al. [23])126
Fig. 9.10	Left ventricular support devices. (a) Shows the centrifugal
	flow pump the HeartMate 3 device. HeartWare (not shown
	here) is also a centrifugal flow pump. (b) Shows the axial
	flow pump HeartMate II device. Both are connected to
	external systems with a driveline. Inflow cannulas sit in the
	LV and outflow cannulas in the aorta. (Reproduced with
E: 0.11	permission from Abbott Laboratories)
Fig. 9.11	LVAD hemodynamics. (a) The actual how generated by an
	A stual flow rates in an LVAD very throughout the cordina
	cycle. During systels, the pressure gradient between the LV
	and the sorts shrinks, so flow increases. The right panel
	shows an IVAD that is more sensitive to changes in head
	pressure, with larger fluctuations in flow rate (Reproduced
	with permission from Lim et al. [30])
Fig. 9.12	Impella RP. The impeller pumps blood from the inferior
<u>.</u>	vena cava to the pulmonary artery. (Reproduced with
	permission from Kapur et al. [32])

Fig. 10.1	Hemodynamic profiles in ADHF. Evidence for congestion
	(the "yes-no" delineation of the two columns) includes
	orthopnea, elevated JVP, hepatojugular reflux, S3, rales,
	hepatomegaly, ascites, peripheral edema, and a loud P2.
	Evidence for low perfusion (the "ves-no" delineation of the
	two rows) includes narrow pulse pressure cool and clammy
	extremities altered mentation and oliguria
$E_{in} = 10.2$	Pahaviar of the nonsistion disk (C) and systelia murmur
rig. 10.2	of mitral value prolonge. The ter nergl shows the first heart
	of initial valve profapse. The top panel shows the first heart
	sound (S1), the mid-systolic click (C), and the second heart
	sound (S2), with the late systolic murmur of moderate
	mitral regurgitation while the patient is supine. With
	standing, (middle panel) venous return decreases, the heart
	becomes smaller, and the prolapse occurs earlier in systole.
	The click and murmur move closer to S1. With squatting,
	(lower panel) venous return increases, causing an increase
	in left ventricular chamber size. The click and murmur
	occur later in systole and move away from S1. (From
	Shaver et al. [27])
Fig. 10.3	Jugular venous waveform patterns $-(\mathbf{a})$ normal patients,
-	(b) (constrictive pericarditis), (c) pericardial tamponade and
	(d) (severe tricuspid regurgitation) (TR). JVP jugular
	venous pressure, S1 first heart sound, S2 second heart
	sound. The A, C, and V positive waves, and the X and Y
	negative waves, are explained in the text
Fig. 10.4	Measurement and mechanism of pulsus paradoxus (a) The
0	examiner inflates the sphygmomanometer cuff fully, listens
	for Korotkoff sounds as the cuff is slowly deflated, and then
	notes the pressure at which Korotkoff sounds are initially
	audible only during expiration. As the cuff is further
	deflated the examiner notes the pressure at which
	Korotkoff sounds become audible during expiration and
	inspiration. The difference between these two pressures is
	the pulsus percederus, which can respective from 0 to
	10 rem He In condition to many be from 0 to
	To him rig. In cardiac tamponade, the pulsus paradoxus
	measures greater than 10 mm Hg. Inspiratory diminution in
	the arterial blood pressure tracing represents the pulsus
	paradoxus. A similar phenomenon may be observed on a
	pulse oximeter waveform. (b) During inspiration in the
	normal heart, negative intrapleural pressures increase
	venous return to the right ventricle and decrease pulmonary
	venous return to the left ventricle by increasing the pulmo-
	nary reservoir for blood. As a result of increased right
	ventricular distention, the interventricular septum bows
	slightly to the left, and the filling and stroke volume of the
	left ventricle are mildly reduced. In expiration, these
	changes are reversed, resulting in the septum bowing to the
	right and a mild reduction in right ventricular filling. In the

presence of cardiac tamponade, the reciprocal changes seen in the normal heart are exaggerated when the pericardial sac is filled with fluid, thus limiting distensibility of the entire heart. This results in a more dramatic reduction in filling of the left ventricle during inspiration, exacerbating the normal inspiratory decrease in stroke volume and blood Fig. 10.5 Relationship of murmurs to LV, aortic, and LA pressure waveforms and hemodynamics in various valve diseases. (a) Aortic stenosis (AS). The gradient between the left ventricle and aorta in AS is greatest in mid-systole and is relatively small early and late in systole. The murmur therefore has a diamond shape, i.e., starts soft and builds to a peak in mid-systole and then becomes quiet in late systole immediately before S2. In young AS patients, there may be an early ejection sound. In senile AS, A2 becomes diminished or absent. An S4 is common due to LV noncompliance. (b) Aortic regurgitation (AR). The carly diastolic murmur (EDM) begins with S2 and has a decrescendo contour. The duration of the murmur continues for a variable time in diastole, depending on severity and acuity of AR. Notice that aortic diastolic pressure is low. (c) *Mitral regurgitation*. There is a pansystolic murmur with a flat profile due to the regurgitant flow into the left atrium. Note that the left atrial pressure rises during systole, a "v" wave. An early diastolic S3 or flow rumble may occur. (d) Mitral stenosis (MS). A loud S1 is heard since the mitral gradient is high and the leaflets are not very thickened or calcified. An important indicator of the severity of MS is the time interval between the S2 and opening snap (OS), which is the time it takes for LV pressure to fall from late systolic aortic pressure to early diastolic left atrial pressure. The mitral valve snaps open due to the increased gradient, causing an opening snap (OS). The diastolic murmur correlates with the gradient across the mitral valve, which is largest in early diastole, and increases again in late diastole in this patient in sinus The Doppler principle and Bernoulli equation. Bottom Fig. 11.1 right: The echo transducer sends ultrasound waves at a given frequency (f_0) to the heart, and the sound waves are reflected back to the transducer at a different frequency $(f_{\rm r})$. The difference between (f_0) and (f_r) is the Doppler shift. As shown in the equation, the Doppler shift is directly proportional to the transmitted frequency (f_0) , the cosine of the angle of incidence θ (angle between the ultrasound wave and vector of the red blood cell), and the velocity of the red blood cells, however, is inversely proportional to the

speed of ultrasound in the medium (c). Rearrangement of the equation allows one to determine the velocity of the red blood cells. Top right: The Bernoulli equation enables one to determine the pressure gradient across a stenosis, in this case, a stenotic aortic valve. Flow accelerates just before and at the level of the stenosis. The velocity proximal to the stenosis is V_1 , and the velocity distal to the stenosis is V_2 . Based on certain assumptions (see text), the Bernoulli equation can be simplified to $P1 - P2 = \Delta P = 4(V_2)^2$. In this case, the peak gradient is 64 mmHg based on the peak velocity across the aortic valve (V_2) of 4 m/s. Reprinted with permission, Cleveland Clinic Center for Medical Art & Photography © 2011.....156 Fig. 11.2 Various forms of Doppler in echocardiography. (a) Pulse wave (PW) Doppler of the mitral inflow with the sample volume placed at the leaflet tips. In PW, the same transducer crystal sends and receives waves to determine the Doppler shift at a particular sample volume, marked by the white arrow. Because PW obtains information about a particular location, it is said to have "range specificity or range resolution," but it is prone to aliasing. Note that in diastole there is early filling (E wave) and Late Filling (A wave). Diastasis is known as the period between the E and the A wave. The E velocity is 68 cm/s. (b) Continuous wave (CW) Doppler across the aortic valve. In CW, one crystal sends sound waves continuously and another crystal receives the sound waves. Because the CW profile represents all the velocities along the path of interrogation (represented by the *dotted line*), the peak velocity cannot be localized based on the CW signal alone. This phenomenon is known as "range ambiguity." The y axis is velocity and the x axis is time, and therefore the area under the curve is the velocity time integral (VTI), or the aortic valve VTI, in units of distance (cm). In this example, the peak velocity is 1.3 m/s and the Aortic Valve VTI is 22 cm. (c) Tissue Doppler of the mitral annulus characterizes annular velocities, with the corresponding annular e'and a' waves. These waves correspond temporally with the *E* and *A* waves of the mitral inflow. Because E = 68 cm/s and e' = 13 cm/s, the ratio E/e' is roughly 5, suggesting normal PCWP pressures. (d) Color Doppler in which the color pixels represent the mean velocity vector at a Fig. 11.3 Right-sided pressures. (a) M-mode through the IVC from the subcostal view. Note that the IVC size is <2.1 cm and collapses greater than 50%, suggesting normal right atrial pressure (0-5 mmHg). (b) Pulse wave (PW) Doppler of the hepatic vein showing normal hepatic vein flow. Note that

there are two antegrade waves (S and D) and one retrograde wave (a reversal). The representative portions on the JVP waveform are shown (S corresponds to the x descent, and Dcorresponds to the y descent). The onset of the S wave corresponds to the onset of the QRS (isovolumic contraction), although the peak occurs in mid to late systole. In this example, the velocity of the S wave is larger than the D wave, indicating normal right atrial pressures. (c) A plethoric IVC greater than 2.1 cm in width which does not collapse, suggesting a right atrial pressure between 10 and 20 mmHg. (d) Systolic flow reversal in the hepatic veins in severe tricuspid regurgitation. Notice that the S wave is above the baseline, indicating flow reversal. This corresponds to the blunted x descent and tall y wave in the Fig. 11.4 Pulmonary pressures and signs of pulmonary hypertension. (a) The right ventricular systolic pressure can be estimated from the peak tricuspid regurgitation velocity obtained in the right ventricular inflow view (see Question 1). (b) The continuous wave (CW) Doppler profile of the pulmonary regurgitation jet. The early peak velocity can be used to determine the mean pulmonary artery (PA) pressure by the following formula: Mean PA Pressure = $4v_{\text{EarlyDPR}}^2$. In this case, early pulmonary regurgitation (PR) jet velocity is 3.9 m/s and the end-diastolic PR velocity is 1.9 m/s. Therefore, the mean PA pressure is roughly 39 mmHg. Also, the pulmonary artery end-diastolic pressure (PAEDP) can be determined from the end-diastolic velocity and estimated right atrial (RA) pressure: PAEDP = RA + $4v_{\text{EDPR}}^2$ (see Question 2). Note that in pulmonary hypertension, there is absence of the typical end-diastolic dip in the pulmonary regurgitation CW profile that normally corresponds to atrial systole. (c) The sample volume is in the RVOT, just below the pulmonic valve. In pulmonary hypertension, there is a steep slope in early systole (acceleration phase becomes shorter, upper left corner) and there can be a mid-systolic dip in the RVOT profile (yellow stars), due to high afterload. A simplified formula to calculate the mean pulmonary artery pressure (MPAP) is MPAP = 80 - 0.5 (acceleration time (ms)). Acceleration time is roughly 90 ms, yielding a MPAP of 35 mmHg. (d) Note the D-shaped septum during systole, suggestive of RV Fig. 11.5 Stroke volume and aortic valve area (AVA) calculation using the continuity equation. (a) Based on the continuity equation, the flow through the left ventricular outflow tract (LVOT), or the volume of the blue cylinder, must

equal the flow through the aortic valve, or the volume of

the *red cylinder*. The stroke volume (represented by the blue cylinder) is estimated by multiplying the LVOT area by the LVOT VTI. The LVOT area is obtained using the equation Area = πr^2 = (Diameter)²*0.785, with the diameter measured in the parasternal long axis view. Because the LVOT diameter in this case is 1.9 cm, the LVOT area is 2.84 cm². From the apical 5 chamber or apical long axis view, the LVOT VTI is obtained, which in this case is 28.1 cm (bottom right and (b)). Therefore, the stroke volume = $28.1 \text{ cm} \times 2.84 \text{ cm}^2 = 79.8 \text{ cm}^3$. The product of the stroke volume and the heart rate (SV*HR) can give an estimate of cardiac output. The volume of the *red cylinder* is the product of the AVA and the AV VTI (c, d). Because the volume of the *blue cylinder* (LVOT Area*LVOT VTI) must equal the volume of the red cylinder (AVA*AV VTI) to satisfy the continuity equation, it follows that AVA = [LVOTVTI * (LVOTdia meter)² * 0.785]/[AVVTI] = Strokevolume/AVVTI (see Question 3). (b) Pulse wave Doppler Sample volume is placed just below the aortic valve in the 5 chamber view. and the LVOT VTI is traced. (c) Continuous wave Doppler measures the highest velocity along its path to estimate the peak and mean gradient across the aortic valve. The peak and mean gradients are 95/55 mmHg from the 5 chamber view, which is an underestimation of peak flow in this particular patient. Multiple views are necessary to obtain the highest, most representative jet velocity, as seen in (d). Right sternal border view obtains peak and mean gradients of 119/74 mmHg, higher than the peak gradient of 95 mmHg from the apical 5 cham-Fig. 11.6 Shunt calculation in a patient with a secundum atrial septal defect (ASD). (a) Color flow Doppler demonstrates left to right flow across the ASD in this subcostal view. (b) Pulse wave Doppler at the level of the ASD confirms that there is left to right continuous flow. During peak systole, based on the velocity of 1.2 m/s, the pressure gradient between the right atrium (RA) and the left atrium (LA) is $4v^2 = 4(1.2)^2 = 5.8$ mmHg. The RA pressure was estimated at 10 mmHg, so the LA pressure during systole is estimated at 15.8 mmHg (LA = RA + $4v^2$). (c) Measurement of systemic flow (Q_s) based on the LVOT area and LVOT VTI (pulse wave Doppler from the apical 5 chamber view, right upper corner). (d) Measurement of pulmonary flow (Q_n) based on the RVOT area and the RVOT VTI (pulse wave

Fig. 11.7 Assessment of mitral stenosis. (a) Continuous wave Doppler across the mitral valve yields the peak and mean gradient (14/7 mmHg). Given the irregular heart rhythm, 6-8 beats are measured and averaged to obtain the peak and mean gradient. (b) The pressure half-time (PHT) is the time for the pressure gradient to decrease by 50%, and is equal to 0.29*Deceleration time. Again, multiple beats are averaged (6-8) to obtain the PHT of 214 ms. The mitral valve area (MVA) is estimated by the following empiric equation: MVA = 220/PHT, giving a MVA of 220/214, or 1.0 cm², by the PHT method, (c) Calculation of MVA using the continuity equation. The flow across the mitral valve must equal the flow across the aortic valve, and therefore, MVA * MVVTI = LVOTarea * LVOTVTI. In this case, the LVOT diameter is 1.9 cm, the LVOT VTI is 20 cm, and the MV VTI is 56.4 cm. Therefore, the calculated MV area is 1.0 cm². Note that the MV VTI is measured using CW and the LVOT VTI is measured using PW in this situation. (d) Planimetry is another method of estimating the MVA. Note the commissural fusion and "fish-mouth" appearance of the mitral opening, characteristic of rheumatic mitral valve disease. In this example, planimetry yields a MVA of 1.0 cm², concordant with the PHT and continuity methods . . . 169 Fig. 11.8 PISA (proximal isovelocity surface area) method for mitral regurgitation and vena contracta. (a) Artistic rendition of the PISA concept. As flow converges during systole toward the regurgitant orifice, it accelerates and forms concentric hemispheres of increasing velocity and decreasing radius. For example, the velocity at the edge of the yellow hemisphere is higher than the velocity at the edge of the blue hemisphere. First the image should be optimized and zoomed. Next, the color baseline is shifted downward toward the direction of flow, from -65 to -40 cm/s, creating the larger yellow hemisphere with a lower velocity on the right. The velocity at the boundary between the yellow and blue hemisphere is the aliasing velocity ($V_a =$ -40 cm/s). The flow proximal to the orifice equals the product of the hemisphere surface area $(2\pi r^2)$ and the aliasing velocity (V_a) . This proximal flow should equal the flow distal to the orifice, which is the product of the regurgitant orifice area (EROA) and peak MR velocity $(V_{\rm MR})$. Therefore, EROA = $(2\pi r^2 * V_a)/V_{\rm MR}$. (b) Similar to panel A, after creating a zoomed-in image, the color baseline is shifted toward the direction of flow, and a larger hemisphere with a known radius (0.8 cm) and aliasing velocity ($V_a = 38.5$ cm/s) is created. Based on the above equation, the proximal flow rate is $154.7 \text{ cm}^3/\text{s}$. (c) Continuous wave Doppler across the mitral valve to obtain

- Fig. 11.9 Severe aortic insufficiency (AI). (a) Parasternal long axis view color Doppler demonstrates a very severe, eccentric, and posterior directed jet. Note that the M-Mode across the mitral leaflet shows fluttering of the anterior leaflet due to the aortic insufficiency jet (lower left corner inset). Given the eccentricity, one cannot use the LVOT jet area to assess severity. (b) Pulse wave Doppler with sample volume in the upper descending thoracic aorta, demonstrating holodiastolic flow reversal, a sign of severe AI. (c) Continuous wave Doppler across the aortic valve in the apical 5 chamber view. The PHT is 253 ms, consistent with severe AI. The aortic insufficiency VTI is 232 cm based on the CW profile. (d) Application of the continuity equation allows for the calculation of the regurgitant AI volume. Flow across the mitral valve plus the regurgitant volume should equal the flow across the aortic valve (Stroke volume). The MVA is determined by measuring the mitral valve diameter, and this area (5.3 cm^2) is multiplied by the MV VTI at the annulus (19 cm) to yield a flow of 101 cm³. Flow across the aortic valve is determined by the product of the LVOT VTI and LVOT area, which yields a volume of 169 cm³, calculation not shown. Therefore, the aortic insufficiency regurgitant volume is $169 \text{ cm}^3 - 101 \text{ cm}^3 =$ 68 cm³, consistent with severe AI. The regurgitant orifice area (EROA) of the aortic valve is calculated by dividing the regurgitant volume (68 cm^3) by the AI VTI (232 cm), which equals 0.3 cm², also consistent with severe AI......175
- Fig. 11.10 Summary of intracardiac pressure calculations. RA right atrial pressure, IVC inferior vena cava, RVSP right ventricular systolic pressure, V_{TR} peak tricuspid regurgitation velocity, PASP pulmonary artery systolic pressure, RVOT right ventricular outflow tract, PS pulmonic stenosis; PAEDP pulmonary artery end-diastolic pressure, V_{EDPR} end-diastolic pulmonary regurgitation velocity, PAP pulmonary artery pressure, $V_{EarlyDPR}$ early diastolic pulmonary regurgitation velocity, PVR pulmonary vascular

xxxii	
	resistance, VTI velocity time integral, LVOT left ventricular outflow tract, D diameter, LA left atrial pressure, SBP systolic blood pressure, V_{MR} peak mitral regurgitation velocity, PCWP pulmonary capillary wedge pressure, LVEDP left ventricular end-diastolic pressure, DBP diastolic blood pressure, V_{EDAI} end-diastolic aortic insuf- ficiency velocity, SVR systemic vascular resistance, Q_p pulmonary flow, Q_s systemic flow. (Reprinted with permis- sion, Cleveland Clinic Center for Medical Art &
Fig. 12.1	Photography © 2011)
Fig. 12.2	Myocardial tagged image (short axis orientation) with saturation lines depicted across the myocardium in both systole (<i>right</i>) and diastole (<i>left</i>)
Fig. 12.3	ECG-gated cardiac computed tomography with iodinated contrast axial image demonstrating atrial septal defect (ASD), ostium secundum type (<i>top</i>). Cardiac MRI (<i>bottom</i>) steady-state free precession 4-chamber image demonstrat- ing ASD, ostium secundum type (<i>right</i>), and phase-contrast image demonstrating left to right shunt across ASD (<i>left</i>) 190
Fig. 12.4	Patent ductus arteriosus. Image at right is 3D, volume rendered MR image of PDA (<i>arrow</i>). Image at <i>left</i> is MR angiography sagittal image demonstrating PDA in an alternate orientation (<i>arrow</i>)
Fig. 12.5	Scimitar syndrome patient (partial anomalous pulmonary venous drainage). Image at <i>left</i> demonstrates 3D volume- rendered MR image of anomalous pulmonary venous return with right inferior pulmonary vein draining via antrum on inferior vena cava. Image at right is coronal MR maximum intensity projection (MIP) depicting same

Fig. 12.6	Aortic stenosis. Cardiac CT 3D reconstructed multi-planar	
	image of the aortic valve in short axis at end-systole with	
	planimetry of aortic valve area	.193

- Fig. 12.7 Constrictive pericarditis cardiac MRI. Images at *top* demonstrate real-time free-breathing gradient echo short axis image of the left ventricle demonstrating ventricular interdependence in patient with constrictive pericarditis. Images at *bottom* are spin-echo "dark-blood" images in multiple orientations demonstrating pericardial thickening ...195
- Fig. 12.8 3D volume rendered MR angiography image of aortic coarctation (*arrow*) with significant collateral vessels196
- Fig. 12.9 Anomalous origin of the coronary arteries. Image at left demonstrates a maximum intensity projection (MIP) image of a common origin of both the left and right coronary arteries from a single, common ostium with the circumflex coronary artery passing retro-aortic (*arrowhead*). Image at left is a 3D volume-rendered image depicting same (*arrow*). . 197
- Fig. 12.10(a) Coronary CT angiography image dataset, acquired using standard imaging protocol. (b) Image segmentation produces an anatomic model of the root of aorta and epicardial coronary arteries including all second and third order branchings to approximately 1 mm in diameter. (c) Physiologic model of coronary flow with specified inflow and outflow boundary conditions is created. Resting coronary flow is based on left ventricular myocardial volume extracted from CT image data and the microcirculation model is based on epicardial vessel size. (d) Computational fluid dynamics methods are used to simulate coronary blood flow under maximal hyperemia with simultaneous computation of coronary pressure and flow at millions of discrete points throughout the coronary tree. (e) Three-dimensional display of FFR_{CT} values in each coronary artery and its branches with color coding of numerical FFR_{CT} values as shown on the scale. (Images courtesy of Dr. Christopher Zarins, HeartFlow)......198
- Fig. 12.11 CT-FFR. Case example. CCTA demonstrates heavily calcified LAD lesion with >70% stenosis. HeartFlow FFR_{CT} analysis shows functionally significant proximal LAD stenosis with FFR_{CT} 0.68. Coronary angiogram confirms 70% LAD stenosis with measured FFR 0.71. (Images courtesy of Dr. Christopher Zarins, HeartFlow)......198
- Fig. 13.1 The CardioMEMS[™] HF implantable hemodynamic monitoring system. (a) CardioMEMS sensor or transmitter;
 (b) transcatheter implantation of the device into a distal branch of the descending pulmonary artery; (c) patient is instructed to take daily pressure readings from home using the home monitoring unit; (d) information transmitted from

VVVIII	
XXXIV	

the monitoring system to the database is immediately available to treating physicians for review; (e) transmitted information consists of pressure trend information and individual pulmonary artery pressure waveforms and are available on the online portal for healthcare providers. Fig. 13.2 Relationship between LVEDP and impedance. Data shown are for impedance recorded by left ventricular (LV) r-Can in 12 dogs. Correlation coefficient is calculated using Spearman rank order. (Adapted from Khoury et al. [36]).....209 Fig. 13.3 Relationship between LA pressure and Impedance. Data shown are for impedance recorded by left ventricular (LV) r-Can in 1 dog at different time points of the experiment. Correlation coefficient is calculated using Spearman rank Tetrapolar system of electrodes, separating the current Fig. 13.4 pathway from the sensing pathway. After transmitting electricity by way of the outer electrodes, the impedance to flow of the current through the thorax along the path of least resistance (i.e., the great vessels) is sensed by way of the inner electrodes. (Adapted from Summers et al. [39]) 210 Fig. 13.5 Definition of cardiac and impedance waveforms during the cardiac cycle. Waveforms Z₀ baseline impedance, A atrial wave, Baortic valve opening, Cmaximum aortic flow (dZ/dt_{max}), X aortic valve closing, Y pulmonic valve closing, O mitral valve opening, PEP pre-ejection period, VET ventricular ejection time, IVRT isovolumic relaxation time, FT ventricular filling time. (Adapted from Summers Fig. 13.6 Operational algorithm for detecting changes in impedance over time. (a) Differences between measured impedance (bottom; o) and reference impedance (solid line) are accumulated over time to produce fluid index (top). Threshold is then applied to fluid index to detect sustained decreases in impedance. (b) Example of impedance reduction before heart failure hospitalization (arrow) for fluid overload and impedance increase during intensive diuresis during hospitalization. Label indicates reference baseline (initial reference impedance value when daily impedance value consistently falls below the reference impedance line before admission). Magnitude and duration of impedance reduction are also shown. Days in hospital Fig. 13.7 Overview of aortic flow as a function of time and its use to measure cardiac hemodynamics. The basic principle of stroke volume (SV) estimation from changes in the

Fig. 14.1	Harmonics in hemodynamic assessment. The aortic
	pressure waves shown at the bottom are composed of
	simpler sinusoidal harmonic waves. Each harmonic is a
	multiple of the fundamental frequency, in this case 1.5 Hz.
	The data contained within each harmonic contributes in
	some way to the reconstructed waveform, depicted in this
	illustration by color. Exclusion of one or more harmonics
	by a monitoring system can produce a distorted, inaccurate
	pressure tracing

Fig. 14.2 (a) Catheter whip in a pulmonary artery (PA) pressure tracing. Whip occurs when the catheter tip vibrates in response to ventricular contraction or valvular motion. Whip causes high-frequency distortion of the waveforms, particularly at the high and low points of the complex. Since the extremes of the waveform are equally affected, the mean pressure obtained from a "whipped" tracing is generally accurate. Whip can be attenuated by catheter repositioning, the use of a high-frequency filter, or increased damping. (b) Damping-related artifacts. Overdamping results in a flat, low-amplitude waveform that lacks contour detail. Overdamping can be caused by catheter kinking, air bubbles or blood in the transducer circuit, and the use of long, small-caliber catheters. It can be overcome by removing kinked tubing, flushing of the catheter and manifold, and use of shorter, large-caliber catheters. Under-damping produces exaggerated waveforms with overestimated amplitudes. It occurs when the natural frequency of the catheter system approximates a harmonic frequency in the pressure wave. This can be offset by lowering the natural frequency of the catheter system (longer, smaller-caliber catheters) or the patient (treat tachycardia). (c) Positional artifact. This is characterized by flattening of the pressure tracing with a gradual rise in pressure. It most often occurs when the catheter tip is pressed against the wall of a vessel or chamber. Gentle withdrawal and redirection of the catheter typically solves the problem. (d) Transducer malposition. In this example, the true mean right atrial pressure is 10 mmHg. When the transducer is zeroed at a level 5 cm below the sternal angle the catheter recording is accurate. When the transducer is zeroed at a level above the chest, the pressure is underestimated. When the transducer is zeroed at a level well below the right atrium, the pressure is overestimated. (e) Respiratory variation of right atrial pressure. The thinwalled right-sided chambers are subject to respiratory variation, particularly in subjects with underlying obstructive lung disease. Pressure measurements taken during a

XXXVI	xxxvi	
-------	-------	--

	few seconds of breath holding at the end of normal expira-
	tion (when intrathoracic pressure is theoretically zero) are
	much less variable
Fig. 14.3	Schematic representation of the major electrical and
-0	mechanical events during the cardiac cycle: (a) atrial
	contraction: (b) isovolumic contraction: (c) rapid election:
	(d) reduced ejection: (e) isovolumic relaxation: (f) rapid
	ventricular filling: and (\mathbf{g}) reduced ventricular filling
Fig. 14 A	(a-f) Normal cardiac pressure tracings Descriptions of
1 lg. 14.4	(a-f) Normal cardiac pressure tracings. Descriptions of
	Abnormal pressure tracing obtained during selective
	Abilonnial pressure tracing obtained during selective
	coronary angiography. In the presence of severe ostial
	stenosis, the endnoie catheter transmits a distorted wave-
	form due to the reflected coronary wedge pressure and
	appears as a hybrid between aortic and ventricular pressure
	(ventricularized pressure) waveform
Fig. 14.5	Diagram of the pulmonary capillary wedge technique230
Fig. 14.6	Estimating the transaortic pressure gradient. The pressure
	waves produced by simultaneous catheterization of the left
	ventricle and proximal ascending aorta are superimposed.
	The shaded area under the curve (AUC) is calculated,
	providing the mean transvalvular gradient
Fig. 15.1	ECG demonstrating electrical alternans
Fig. 15.2	Echocardiogram with Doppler evaluation demonstrating
	respiratory flow variation across mitral (a) and tricuspid
	valves (b)
Fig. 15.3	Pre-pericardiocentesis (a) and post-pericardiocentesis
	(b). (Reprinted from modification by LeWinter [9])239
Fig. 15.4	Intrapericardial pressure that is critical in determining the
	transmural pressure is affected by the time course of fluid
	accumulation. Rapidly developing effusions reach the
	limits of the pericardial stretch sooner, whereas slowly
	developing effusions are better tolerated due to the time
	allowed for the pericardium to adapt to the changes
	imposed by the effusion. (Adapted from Spodick $[10]$)241
Fig. 15.5	Stages of pericardial tamponade showing pressures in the
	right atrium, right ventricle, pulmonary capillary wedge
	pressure, and intrapericardium (peri pericardium, RV right
	ventricle, LV left ventricle, CO cardíac output, IFASP
	inspiratory decrease in arterial systolic pressure). Initial
	concept and its revision with further data are shown below
	detailing changes in the pressures across stages of
	tamponade. (Adapted from Reddy et al. [3])
Fig. 15.6	Top panel showing tricuspid and bottom panel showing
-	mitral valve inflow pattern
Fig. 15.7	Hepatic vein tracing showing flow to the atrium predomi-
-	nantly during systole and blunted return in diastole. After
	pericardiocentesis, flow to atrium during diastole is recovered246

Fig. 15.8	Diastolic equalization of right atrial (mean), right ventricular end diastolic, pulmonary arterial diastolic pressures demonstrated as the PA catheter is pulled back from the pulmonary artery
Fig. 15.9 Fig. 15.10	Right atrial pressure waveform with blunted y descent247)Pericardiocentesis can be performed using paraxiphoid approach where the needle is inserted between xiphoid process and left costal margin at a 15° angle above the skin. In apical approach, the needle is inserted 1–2 cm lateral to the apex within the fifth, sixth, or seventh intercostal space.
Fig. 16.1	(Adapted from Spodick [10])
Fig. 16.2	(From Klein et al. [9])
Fig. 16.3	mechanisms to become activated

	shows markedly reduced velocities in both (e) septal e' of
	3 cm/s and (f) lateral e' of 4 cm/s
Fig. 16.4	Midventricular septal M-mode recording (parasternal long
U	axis) in a patient with constrictive pericarditis. There is
	leftward ventricular septal shift in inspiration. Exp indicates
	expiration and Inspiration
Fig. 16.5	Echocardiography of a patient with constrictive pericarditis.
	(a) The pulse wave Doppler study of the mitral inflow
	shows high E/A ratio which is ~2.3 and short deceleration
	time of 125 ms. Tissue Doppler imaging (TDI) of mitral
	annulus shows "annulus reversus" with (b) sental e' of
	10 cm/s and (c) lateral e' of 5 cm/s (d) There is significant
	respiratory variation in the mitral inflow [(expiration –
	inspiration)/expiration: $(115-84)/(115 \times 100\%) = -27.0\%$
	Inspiration, optimized, (110 01), 110 × 100, 0 = 21.0, 0].
	image shows plethoric inferior yena caya (IVC) with
	diameter of 2.6 cm and $<50\%$ change in diameter during
	respiration (f) Global longitudinal strain (GLS) study
	shows I V antero-lateral wall shortening strains were lower
	than the sental shortening strains and shortening strains were sower 258
Fig. 166	Pulmonary venous flow during different phases of respira-
11g. 10.0	tion in different conditions. S indicates pulmonary vein
	systolic flow. D pulmonary vein diastolic flow: AR atrial
	reversal: Insp inspiration: Exp expiration 259
Fig. 167	Pulsed-wave Doppler recording (subcostal window) within
1.6.10.	the hepatic vein in a patient with constrictive pericarditis.
	Note prominent diastolic flow reversals in expiration, with
	the diastolic reversal ratio defined as reversal velocity
	divided by forward velocity (~0.35 m/s reversal velocity
	divided by ~ 0.40 cm/s forward flow velocity yields a
	diastolic reversal ratio of 0.875). Exp indicates expiration260
Fig. 16.8	Pericardial calcification seen on CXR (a and b) and CT
8,	scan (\mathbf{c} and \mathbf{d}). Red arrows indicate the location of
	pericardial calcification
Fig. 16.9	CMR free breathing sequence shows the presence of
0	ventricular septal shift. The ventricular septum moves
	toward the left ventricle with inspiration during diastole (a)
	and toward the right ventricle with expiration during
	diastole (b)
Fig. 16.10	CMR of a patient with sarcoidosis. (a) There is increased
C	myocardial signal intensity on T2-STIR imaging to suggest
	myocardial edema (white arrow). (b) Delayed-enhancement
	imaging reveals late gadolinium enhancement (LGE) in a
	non-ischemic pattern. There is near transmural LGE in the
	basal and mid inferoseptum (sparing the endocardium) and
	mid-myocardial LGE in the mid-anterolateral and transmu-
	ral LGE at the inferolateral apex

- Fig. 16.11 Left and right heart catheterization of a patient with constrictive pericarditis. (a) Pressure tracing of the right atrium shows prominent x- and y-descents. v indicates v wave; a, a wave; x, x-descent; and y, y-descent. (b) Simultaneous recording of LV and RV pressure tracings shows "dip-and-plateau"/"square-root" sign and equalization of both ventricular diastolic pressures. (c) Simultaneous recording of LV and RV pressure tracings with respiratory variation shows ventricular interdependence. LV indicates left ventricle and RV, right ventricle.....264

- Fig. 17.4 Pulsed-wave Doppler of mitral inflow demonstrating calculation of the mitral valve area (MVA) using the pressure half-time (PHT) method. MVA = 220/PHT281

Fig. 17.5	Patient with moderate mitral stenosis and atrial fibrillation.
	The mean gradient across the mitral value is significantly
	increased in the setting of decreased diastolic filling time
	(i.e., increased heart rate) (beat 1:12 mmHg vs. beat
	2:5 mmHg)
Fig 176	Simultaneous measurement of left atrial (I.A) and left
1.9.17.0	ventricular (IV) pressures in a patient with mitral stenosis
	before (a) and after (b) percutaneous mitral balloon
	valuation lastry Prior to PMPV a substantial gradient is
	valvulopiasty. Filo to Fivid v, a substantial gradient is
	present until the end of diastole. In this patient, the pre-
	procedural resting gradient was 10 mmHg, and
	post-procedural gradient was 4 mmHg. Paper speed is
	faster in panel A
Fig. 17.7	Demonstration of the mitral regurgitation (MR) jet and
	calculation of the proximal isovelocity surface area (PISA).
	In this patient with an aliasing velocity set at 38.5 cm/sec
	and a MR velocity of 500 cm/sec (not shown), the
	simplified effective regurgitant orifice (ERO) calculation
	can be used $(r^2/2)$, providing an ERO of 0.5 cm ² , which is
	consistent with severe MR. (Adapted with permission from
	Krishnaswamy et al., Coron Art Dis 2011)
Fig. 17.8	Pulmonary artery catheter pressure tracing in the wedge
0	position (PCWP) in a patient with acute severe mitral
	regurgitation due to papillary muscle rupture complicating
	acute myocardial infarction demonstrates a large y-wave 285
Fig 181	The modified Borg scale has the potential to provide quick
11g. 10.1	easy and rapid information about a patient's subjective
	state of ducpres
Eia 100	(a) Defletion of the wedged pulmonery confilms hellers
FIg. 10.2	(a) Denation of the wedged putnionary capitality balloon
	calleler results in a rapid increase in the pressure record-
	ings identifying the pulmonary artery pressure. In this case
	the mPAP is >25 mmHg and PCWP is <15 mmHg consis-
	tent with a diagnosis of PAH. (b) Identification of pulmo-
	nary venous hypertension using continuous right heart
	pressure monitoring during acute balloon inflation and
	deflation. The PA pressure is elevated but the mPCWP is
	well in excess of 15 mmHg with large v-waves, reflecting
	the impact of severe mitral regurgitation in this case
Fig. 18.3	This wedge tracing illustrates the respirophasic waveforms
	with the digitized means and the difference between
	PCWP-exp versus the automatically derived mean PCWP,
	thereby resulting in misclassification. (Reprinted with
	permission of publisher [24])
Fig. 18.4	Initial RHC in a patient with scleroderma that suggests the
U	presence of PVH. There is limited respiratory variation in
	the PCWP tracing and the tracing appears to be a hybrid
	(fusion of PAP and PCWP waveforms) suggesting incom-
	nlete halloon occlusion of the pulmonary artery. These
	prete barroon occusion of the pullionary aftery. These

tracing were not consistent with the expected findings. In such cases multiple measurements should be obtained in different locations, and the LVEDP should then be measured for confirmation. This patient required repeat hemodynamic assessment to obtain proper measurements....299 Fig. 18.5 Repeat RHC which indicates the presence of PAH (the expected finding given the clinical history). The LVEDP Fig. 18.6 Gentle contrast injection into the right pulmonary artery under balloon inflation (pulmonary wedge angiogram). The tip of the balloon is highlighted by the arrow. Dye is seen filling a branch pulmonary artery proximal to the balloon and suggests incomplete occlusion. In such a case, a hybrid tracing would be present and would lead to an inappropri-Fig. 18.7 Limited pulmonary vein angiogram (AP projection) of an anomalous right upper pulmonary vein performed via right femoral vein access (hand injection via end-hole catheter). The white arrow highlights the distal segment of the pulmonary vein which drains into the SVC at the RA junction. Samples drawn from this vein showed oxygen saturations >95%. A high CO at catheterization in the presence of right heart enlargement and a negative bubble study should prompt careful assessment for possible Fig. 18.8 Collected right heart catheterization waveforms in patient with heart failure and severe mitral regurgitation leading to pulmonary hypertension after aggressive diuresis. These suggest the presence of PAH and initially supported a potential role for selective pulmonary vasodilator therapy in Fig. 18.9 Collected right heart catheterization waveforms during inhalation of 40 ppm of inhaled nitric oxide. Note the dramatic increase in mPCWP to ~30 mmHg and prominent v-waves to >65 mmHg. The PA pressure remained essentially unchanged (73/30 with mean 46 mm Hg) compared to baseline (Fig. 18.7). In this case acute vasodilator testing unmasked the left heart pathology leading to pulmonary Fig. 19.1 Hemodynamic profiles in patients with left-sided heart Fig. 19.2 Renal venous congestion: increased right atrial pressure leading to elevated pressure in the IVC and thus the renal vein (especially when coupled with low mean arterial pressure) can lead to worsening renal function by "congesting the kidney." Decreasing right atrial pressure and thus the renal venous pressure can lead to improved renal

Fig. 19.3 Fig. 19.4 Fig. 19.5	Treatment paradigm in patients with left-sided heart failure316 Case 1: left ventricular pressure tracing
Fig. 19.6	mean pressure of 32 mmHg (normal 1–10 mmHg)
Fig. 19.7	Case 3: parasternal short-axis echo images showing pronounced flattening of the interventricular septum during diastole (a) which is still present during systole (b). This produces a "D-shaped appearance" of the left ventricle as emphasized in the cartoon above. Severe left ventricular dysfunction is suggested by the minimal change in area of the left ventricular covity.
Fig. 20.1	Quantification of IC shunts using transthoracic echocar- diography. Systemic stroke volume or flow (Q_s) can be calculated by using CSA of LVOT, which is derived by LVOT diameter at the end of systole (a), and LVOT VTI (b) pulmonary stroke volume or flow (Q_p) can be measured using CSA of RVOT, which is derived by RVOT diameter at the end of systole (c) and RVOT VTI (d)
	$\frac{Q_p}{Q_s} = \frac{\text{CSA RVOT} \times \text{VTI RVOT}}{\text{CSA LVOT} \times \text{VTI LVOT}}, \frac{Q_p}{Q_s} = \frac{3.14 \times (2.3/2)^2 \times 21.1}{3.14 \times (1.8/2)^2 \times 17.1}, \frac{Q_p}{Q_s} = \frac{87.6}{43.5} = 2.$
Fig. 20.2	<i>CSA</i> cross-sectional area, <i>LVOT</i> left ventricle outflow tract, <i>VTI</i> velocity time integral, and <i>RVOT</i> right ventricle outflow tract

Fig. 20.3	LV EF = 48%, RV EDV = 289 cm ³ ; RV ESV = 124 cm ³ ; RV SV = 165 cm ³ ; and RV EF = 57%. Shunt ratio can be therefore calculated for this ASD case (<i>white arrows</i> show the defect); $Q_p/Q_s = 165/92 = 1.8$ (ASD atrial septal defect, EDV end diastolic volumes, ESV end systolic volumes, LV left ventricle, RV right ventricle)	. 329
	mapping creates flow vs. time curves. The area under the curve represents stroke volume of the ascending porta	
	(Q_s) , which was measured 70 mL/beat for this case.	
	$(Q_s = 70 \text{ mL}).$ (d - f) Phase contrast cine MR imaging for	
	the quantitation of pulmonary flow(Q_p). (a) Magnitude	
	image perpendicular to the main pulmonary artery (white	
	arrow). (c) Through-plane velocity mapping demonstrates	
	flow vs. time curves across the main pulmonary artery.	
	The area under the curve represents stroke volume of the pulmenery entery (Q_{i}) , which was calculated 162 mJ (base	
	for this case. The shunt ratio was therefore calculated	
	$Q_{\rm p}/Q_{\rm s} = 162/70 = 2.2$, which indicates significant left to	
	right shunting	330
Fig. 20.4	Exact localization for the blood sampling in oxymetric run	
	study. 1a main pulmonary artery, 1b left pulmonary artery, lc right pulmonary artery, 2 right ventricular outflow tract	
	<i>3</i> right ventricle, <i>4</i> low right atrium, <i>5</i> mid right atrium, <i>6</i>	
	high right atrium, 7 superior vena cava, 8 inferior vena cava	
	(sample should be obtained just below the diaphragm (blue	
	arrows); hepatic vein must be taken into account while	
	obtaining inferior vena cava blood), 9 left atrium, 10 left	331
Fig. 21.1	Expansion of the pathophysiological paradigm of cardio-	551
5	genic shock to include the potential contribution of	
	inflammatory mediators. LVEDP left ventricular end-	
	diastolic pressure; NO nitric oxide; iNOS inducible nitric	
	vascular resistance. (Reprinted with permission from	
	Hochman and Ohman [26])	340
Fig. 21.2	Normal aortic waveform	346
Fig. 21.3	Example of narrow pulse pressure in a patient with cardio-	
Fig. 21 4	Example of wide pulse pressure in a patient with the line	346
1'ig. 21.4	heart block	346

Fig. 21.5	Example of narrow pulse width in a patient with acute aortic dissection
Fig. 21.6	Example of pulses alternans in a patient with advanced left ventricular failure
Fig. 22.1	Depiction of coronary blood flow at rest and at maximal hyperemia. A normal coronary artery will have a larger increase in blood flow than a diseased artery with a hemodynamically significant stenosis. By measuring the blood velocity or pressure proximal and distal to the stenosis, one can calculate the relative increase in blood flow or decrease in pressure caused by inducing maximal
Fig. 22.2	hyperemia
Fig. 22.3	A typical FFR measurement display screen. The aortic pressure is measured through the guiding catheter (red line). The pressure distal to the coronary lesion is measured by the 0.014" pressure sensor-tipped wire (yellow line). In this example, the ratio of the distal coronary pressure to proximal coronary pressure is 0.70 and consistent with a hemodynamically significant stenosis

List of Tables

Table 1.1	Variations of the right atrial waveform and their
	implications7
Table 1.2	Situations where pulmonary capillary wedge pressure
	(PCWP) may inaccurately represent left ventricular
	end-diastolic pressure (LVEDP)
Table 1.3	Techniques for clinical assessment of cardiac preload16
Table 4.1	Hemodynamic parameters
Table 4.2	Selected hemodynamic insults to cardiac output
Table 5.1	Mechanistic differences between ARBs and ACEIs
Table 5.2	Key clinical outcome trials of ACEI in cardiovascular
	diseases
Table 5.3	Key clinical outcome trials of ARBs in cardiovascular
	diseases
Table 5.4	Key clinical outcome trials of aldosterone antagonists in
	cardiovascular diseases
Table 5.5	Key clinical outcome trials of dual RAAS blockade in
	cardiovascular diseases
Table 5.6	Key clinical outcome trials of vasodilators in cardiovascu-
	lar diseases
Table 6.1	Distribution of α - and β -receptors and mediated effects74
Table 6.2	Pharmacological properties of selected beta blockers74
Table 6.3	CCB classification, recommended uses, and adverse
	effects
Table 6.4	Effect of calcium channel blockers
Table 7.1	Vasodilators
Table 7.2	Comparison of intravenous vasodilators
Table 7.3	Inotrope overview
Table 7.4	Vasopressor agents
Table 7.5	Hemodynamic effects of vasopressors and inotropes ^a 98
Table 10.1	Physical findings in severe aortic stenosis
Table 10.2	Eponymous signs of chronic aortic regurgitation145
Table 10.3	Effect of maneuvers on hypertrophic cardiomyopathy and
	aortic stenosis
Table 11.1	Aortic stenosis stages based on the recent AHA/ACC
	2014 valve guidelines update
Table 11.2	Stage of mitral stenosis
Table 11.3	Mitral regurgitation severity171

Table 11.4	Stages of aortic insufficiency
Table 12.1	CT and MRI advantages and disadvantages
Table 13.1	Electric conductance-based methods for calculating
	cardiac hemodynamics
Table 13.2	Cumulative correlation coefficients of different
	impedance measurements compared to a standard for
	normal variants and pathologic states: How they could
	affect accurate estimation of cardiac output
Table 13.3	Overview of intracardiac impedance monitoring devices 214
Table 14.1	Complications associated with diagnostic left- and
	right-heart catheterization ^a
Table 14.2	Criteria for the angiographic assessment of mitral
	regurgitation
Table 15.1	Three stages of tamponade
Table 15.2	Evidence of tamponade on echocardiogram
Table 15.3	Typical order of findings in tamponade
Table 16.1	Causes of constrictive pericarditis and restrictive
	cardiomyopathy
Table 16.2	Key distinguishing features of constrictive pericarditis
	and restrictive cardiomyopathy
Table 17.1	Echocardiographic evaluation of aortic stenosis severity273
Table 17.2	Possible outcomes of dobutamine stress echocardiography
	in low-flow, low-gradient aortic stenosis
Table 17.3	Physical findings in the peripheral examination of severe
	aortic regurgitation
Table 17.4	Echocardiographic characteristics of severe aortic
	regurgitation (AR)
Table 17.5	Echocardiographic scoring system for mitral valve
	stenosis. A score ≤ 8 is generally associated with favorable
	outcome from percutaneous mitral balloon valvotomy280
Table 17.6	Echocardiographic evaluation of mitral stenosis severity 280
Table 17.7	Echocardiographic determinants of mitral regurgitation
	severity
Table 18.1	World Health Organization classification system for
	pulmonary hypertension ^a
Table 19.1	Symptoms and signs of elevated intracardiac filling
	pressures
Table 19.2	Signs and symptoms of low cardiac output
Table 21.1	Etiologies of shock
Table 21.2	Hemodynamic patterns classically associated with
	different categories of shock