Foundations of Modern Physics

Steven Weinberg University of Texas, Austin

Contents

PREFACE page >	ciii
1 EARLY ATOMIC THEORY	1
 1.1 Gas Properties Air pressure □ Boyle's law □ Temperature Scales □ Charles' law □ Explanation of gas laws □ Ideal gas law 	2
1.2 Chemistry Elements Law of combining weights Dalton's atomic weights Law of combining volumes Avogadro's principle The gas constant Avogadro's number	6
1.3 Electrolysis Early electricity Early magnetism Electromagnetism Discovery of electrolysis Faraday's theory The faraday	10
1.4 The Electron Cathode rays Thomson's experiments Electrons as atomic constituents	14
2 THERMODYNAMICS AND KINETIC THEORY	16
2.1 Heat and Energy Caloric □ Heat as energy □ Kinetic energy □ Specific heat □ Energy density and pressure □ Adiabatic changes	16

\Box Relation to gas thermometers	21
 2.3 Entropy Definition of entropy □ Independence of path □ Increase of entropy □ Thermodynamic relations □ Entropy of ideal gases □ Neutral matter □ Radiation energy □ Laws of thermodynamics 	27
 2.4 Kinetic Theory and Statistical Mechanics Maxwell–Boltzmann distribution □ General <i>H</i>-theorem □ Time reversal □ Canonical and grand-canonical distributions □ Connection with thermodynau □ Compound systems □ Probability distribution in gases □ Equipartition of energy □ Entropy as disorder 	33 nics
2.5 Transport Phenomena Conservation laws □ Galilean relativity □ Navier–Stokes equation □ Viscosi □ Mean free path □ Diffusion	42 ty
 2.6 The Atomic Scale Nineteenth century estimates □ Electronic charge □ Brownian motion □ Consistency of constants □ Appendix: Einstein's diffusion constant rederived 	53
3 EARLY QUANTUM THEORY	61
3.1 Black Body Radiation Absorption and energy density Degrees of freedom of electromagnetic fields	61
□ Rayleigh–Jeans distribution □ Planck distribution □ Measurement of Boltzmann constant □ Radiation energy constant	
 Rayleigh–Jeans distribution Planck distribution Measurement of Boltzmann constant Radiation energy constant 3.2 Photons Quantization of radiation energy Derivation of Planck distribution Photoelectric effect Particles of light 	67
 Rayleigh–Jeans distribution Planck distribution Measurement of Boltzmann constant Radiation energy constant 3.2 Photons Quantization of radiation energy Derivation of Planck distribution Photoelectric effect Particles of light 3.3 The Nuclear Atom Radioactivity Alpha and beta rays Discovery of the nucleus Nuclear m Nuclear size Scattering pattern Nuclear charge 	67 71 ass

Contents	ix
3.5 Emission and Absorption of Radiation Einstein <i>A</i> and <i>B</i> coefficients Equilibrium with black body radiation Relat among coefficients Lasers Suppressed absorption	84 ions
4 RELATIVITY	88
4.1 Early Relativity Motion of the Earth □ Relativity of motion □ Speed of light □ Michelson–Morley experiment □ Lorentz–Fitzgerald contraction	88
4.2 Einsteinian Relativity Postulate of invariance of electrodynamics Lorentz transformations Space inversion, time reversal The Galilean limit Maximum speed Boosts in general directions Special and general relativity	94
4.3 Clocks, Rulers, Light Waves Clocks and time dilation □ Rulers and length contraction □ Transformation of frequency and wave number	103
4.4 Mass, Energy, Momentum, Force Einstein's thought experiment \Box Formulas for energy and momentum $\Box E = m$ \Box Force in relativistic dynamics	106 1c ²
4.5 Photons as Particles Photon momentum Compton scattering Other massless particles	111
4.6 Maxwell's Equations The inhomogeneous and homogeneous equations Density and current of electric charge Relativistic formulation of inhomogeneous Maxwell equations Indi upstairs and downstairs Relativistic formulation of homogeneous Maxwell equations Electric and magnetic forces	114 ic ces
4.7 Causality Causes precede effects □ Invariance of temporal order □ Maximum signal speed □ Light cone	121 d
5 QUANTUM MECHANICS	124
5.1 De Broglie Waves Free-particle wave functions □ Group velocity □ Application to hydrogen □ Davisson–Germer experiment □ Electron microscopes □ Appendix: Derivat of the Bragg formula	125 ion

5.2 The Schrödinger Equation

Wave equation for particle in potential
Boundary conditions
Spherical symmetry
Radial and angular wave functions
Angular multiplicity
Spherical harmonics
Hydrogenic energy levels
Degeneracy

5.3 General Principles of Quantum Mechanics

States and wave functions
Observables and operators
Hamiltonian
Adjoints
Expectation values
Probabilities
Continuum limit
Momentum space
Commutation relations
Uncertainty principle
Time
dependent wave functions
Conservation laws
Heisenberg and
Schrödinger pictures

5.4 Spin and Orbital Angular Momentum

Doubling of sodium D-line
The idea of spin
General action of rotations on wave functions
Total angular momentum operator
Commutation relations
Spin and orbital angular momentum
Multiplets
Adding angular momenta
Atomic fine structure and space inversion
Hyperfine structure
Appendix:
Clebsch–Gordan Coefficients

5.5 Bosons and Fermions

Identical particles \Box Symmetric and antisymmetric wave functions \Box Bosons and fermions in statistical mechanics \Box Hartree approximation \Box Slater determinant \Box Pauli exclusion principle \Box Periodic table of elements \Box Diatomic molecules: para and ortho \Box Astrophysical cooling

5.6 Scattering

Scattering wave function \Box Representations of the delta function \Box Calculation of the Green's function \Box Scattering amplitude \Box Probabilistic interpretation \Box Cross section \Box Born approximation \Box Scattering by shielded Coulomb potential \Box Appendix: General transition rates

5.7 Canonical Formalism

Hamiltonian formalism \Box Canonical commutation relations \Box Lagrangian formalism \Box Action principle \Box Connection of formalisms \Box Noether's theorem: symmetries and conservation laws \Box Space translation and momentum

5.8 Charged Particles in Electromagnetic Fields 195

Vector and scalar potential
Charged particle Hamiltonian
Equations of motion
Gauge transformations
Spin coupling

5.9 Perturbation Theory

Perturbative expansion \Box First-order perturbation theory \Box Dealing with degeneracy \Box The Zeeman effect \Box Second-order perturbation theory

129

138

151

165 1

175

190

5.10 Beyond Wave Mechanics

State vectors 🗆 Linear operators 🗋 First postulate: values of observables

□ Second postulate: expectation values □ Probabilities □ Continuum limit

 \Box Wave functions as vector components

6 NUCLEAR PHYSICS

6.1 Protons and Neutrons

Discovery of the proton \Box Integer atomic weights \Box Nuclei as protons and electrons? \Box Trouble with diatomic nitrogen \Box Discovery of the neutron \Box Nuclear radius and binding energy \Box Liquid drop model \Box Stable valley and decay modes

6.2 Isotopic Spin Symmetry

Neutron-proton and proton-proton forces \Box Isotopic spin rotations \Box Isotopic spin multiplets \Box Quark model \Box Pions \Box Appendix: The three-three resonance

6.3 Shell Structure

Harmonic oscillator approximation
Raising and lowering operators
Degenerate multiplets
Spin-orbit coupling

6.4 Alpha Decay

Coulomb barrier
Barrier suppression factors
Semi-classical estimate of alpha decay rate
Level splitting
Geiger–Nuttall law
Radium alpha decay
Appendix: Quantum theory of barrier penetration rates

6.5 Beta Decay

Electron energy distribution \Box Neutrinos proposed \Box Fermi theory

 \Box Gamow–Teller modification \Box Selection rules \Box Strength of weak interactions

□ Neutrinos discovered □ Violation of left-right and matter-antimatter symmetries

 \Box Neutrino helicities \Box Varieties of neutrino

7 QUANTUM FIELD THEORY

7.1 Canonical Formalism for Fields

Action, Lagrangian, Lagrangian density
Functional derivatives
Euler–Lagrange field equations
Commutation relations
Energy and
momentum of fields

7.2 Free Real Scalar Field

Lagrangian density \Box Field equation \Box Creation and annihilation operators \Box Energy and momentum \Box Vacuum state \Box Multiparticle states

206

210

210

224

216

229

243

255

251

Example: Scattering of neutral spinless particles Feynman diagram Calculation of the propagator Yukawa potential 7.4 Antiparticles, Spin, Statistics Antiparticles needed Complex scalar field General fields Lorentz transformation Spin-statistics connection Appendix: Dirac fields 7.5 Quantum Theory of Electromagnetism Lagrangian density for electrodynamics Four-vector potential Gauge transformations Coulomb gauge Commutation relations Free fields

Time-ordered perturbation theory

Requirements for Lorentz invariance

□ Photon momentum and helicity □ Radiative decay rates □ Selection rules □ Gauge invariance and charge conservation □ Local phase invariance □ Standard model

296
301
303
307

7.3 Interactions

270

261