Linear and Convex Optimization

A Mathematical Approach

Michael H. Veatch Gordon College

Contents

Preface xi About the Companion Website xvii

1 Introduction to Optimization Modeling 1

- 1.1 Who Uses Optimization? 1
- 1.2 Sending Aid to a Disaster 3
- 1.3 Optimization Terminology 9
- 1.4 Classes of Mathematical Programs 11 Problems 16

2 Linear Programming Models 19

- 2.1 Resource Allocation 19
- 2.2 Purchasing and Blending 23
- 2.3 Workforce Scheduling 29
- 2.4 Multiperiod Problems 30
- 2.5 Modeling Constraints 34
- 2.6 Network Flow 36 Problems 44

3 Linear Programming Formulations 55

- 3.1 Changing Form 55
- 3.2 Linearization of Piecewise Linear Functions 57
- 3.3 Dynamic Programming 62 Problems 66

4 Integer Programming Models 71

- 4.1 Quantitative Variables and Fixed Costs 72
- 4.2 Set Covering 74
- 4.3 Logical Constraints and Piecewise Linear Functions 77

viii Contents	
4.4	Additional Applications 81
4.5	Traveling Salesperson and Cutting Stock Problems 86
	Problems 90
5	Iterative Search Algorithms 99
5.1	Iterative Search and Constructive Algorithms 100
5.2	Improving Directions and Optimality 106
5.3	Computational Complexity and Correctness 112 Problems 116
6	Convexity 121
6.1	Convex Sets 122
6.2	Convex and Concave Functions 127
	Problems 131
7	Geometry and Algebra of LPs 133
7.1	Extreme Points and Basic Feasible Solutions 134
7.2	Optimality of Extreme Points 137
7.3	Linear Programs in Canonical Form 140
7.4	Optimality Conditions 145
7.5	Optimality for General Polyhedra 146 Problems 149
8	Duality Theory 153
8.1	Dual of a Linear Program 153
8.2	Duality Theorems 158
8,3	Complementary Slackness 162
8.4	Lagrangian Duality 164
8.5	Farkas' Lemma and Optimality 167
	Problems 170
9	Simplex Method 173
9.1	Simplex Method From a Known Feasible Solution 174
9.2	Degeneracy and Correctness 183
9.3	Finding an Initial Feasible Solution 186
9.4	Computational Strategies and Speed 192 Problems 200
10	Sensitivity Analysis 203
10.1	Graphical Sensitivity Analysis 204
10.2	Shadow Prices and Reduced Costs 208

10.3 Economic Interpretation of the Dual 219 Problems 221

11 Algorithmic Applications of Duality 225

- 11.1 Dual Simplex Method 226
- 11.2 Network Simplex Method 234
- 11.3 Primal-Dual Interior Point Method 246 Problems 256

12 Integer Programming Theory 261

- 12.1 Linear Programming Relaxations 262
- 12.2 Strong Formulations 263
- 12.3 Unimodular Matrices 269 Problems 272

13 Integer Programming Algorithms 275

- 13.1 Branch and Bound Methods 275
- 13.2 Cutting Plane Methods 284 Problems 293

14 Convex Programming: Optimality Conditions 297

- 14.1 KKT Optimality Conditions 297
- 14.2 Lagrangian Duality 306 Problems 312

15 Convex Programming: Algorithms 317

- 15.1 Convex Optimization Models 320
- 15.2 Separable Programs 323
- 15.3 Unconstrained Optimization 325
- 15.4 Quadratic Programming 329
- 15.5 Primal-dual Interior Point Method 331 Problems 339

A Linear Algebra and Calculus Review 343

- A.1 Sets and Other Notation 343
- A.2 Matrix and Vector Notation 343
- A.3 Matrix Operations 345
- A.4 Matrix Inverses 347
- A.5 Systems of Linear Equations 348
- A.6 Linear Independence and Rank 350

x Contents

A.7	Quadratic Forms and Eigenvalues	351
A.8	Derivatives and Convexity 352	

Bibliography 355 Index 361