Contents

List of co	ntributors		xvii	
Preface	e editors		xxi xxiii	
1. Er nc fo <i>M</i> d	itangling onessent od secu	g the interaction between essential and tial nutrients: implications for global rity veer and Sergey Shabala	. 1	
1.1 1.2 1.3 1.4 1.5 Re	Introdu Potassi Zinc/ca Arsenic Conclu ferences	action um/sodium interaction admium interaction c/nitrogen/phosphorus interaction ding remarks	1 2 6 11 15 15	
2. Tł ul ar Su	The importance of beneficial and essential trace and ultratrace elements in plant nutrition, growth, and stress tolerance Surabhi Awasthi, Reshu Chauhan and Sudhakar Srivastava			
2.1 2.2 Re	Introdu Benefic 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 2.2.10 2.2.11 2.2.12 ferences	action cial and essential elements Aluminum Boron Cobalt Copper Iodine Iron Manganese Molybdenum Nickel Selenium Silicon Zinc	27 28 29 30 31 32 33 34 35 36 37 38 39 40	

3.	Cro	p nitrogen use efficiency for sustainable food
	Dhur	niky und chinate change mitgation
	DHUL	nika madan, Aakansha malik and Nahuula Kaghulam
	3.1	Introduction
	3.2	Reactive nitrogen, climate change, and agriculture
	3.3	Understanding nitrogen use efficiency
	3.4	Agronomic approaches to improve nitrogen use efficiency
	3.5	Microbial nitrogen fixation and crop nitrogen use efficiency
	3.6	Plant biological approaches to improve nitrogen use efficiency
	3.7	Transgenic and genome-editing approaches for improving nitrogen use efficiency
	3.8	Manipulation of genes involved in nitrogen acquisition
	3.9	Manipulation of genes involved in nitrogen assimilation

	nitrogen use efficiency
3.8	Manipulation of genes involved in nitrogen acquisition
3.9	Manipulation of genes involved in nitrogen assimilation
3.10	Manipulation of genes involved in nitrogen translocation and remobilization
3.11	Manipulation of genes involved in carbon metabolism and its regulation
3.12	Manipulation of genes involved in signaling
3.13	Conclusions
Ackn	owledgments
Refer	rences

47

47

47

49

50

51

53

54 54 55

58

73

4. and food security

Anna	Koprivova	and	Stanislav	Kopriva
------	-----------	-----	-----------	---------

4.1 Introduction	73
4.2 Sulfur compounds in human nutrition and health	75
4.3 Plant sulfate assimilation and methionine synthesis	79
4.4 Control of plant sulfate assimilation	81
4.5 Impact of changing environment on plant sulfur nutrition	83
4.6 Plant sulfur nutrition and food security—open questions	85
4.7 Conclusions	87
Acknowledgments	87
References	87
Potassium: an emerging signal mediator in plants?	97
Swati Mahiwal and Girdhar K. Pandey	
5.1 Introduction	97
5.1.1 K^+ as a signal in the biological world	97
5.2 K^+ as a signal in bacteria	98
5.3 Does a similar mechanism exist in plants?	99
5.4 How is potassium perceived and sensed in plants?	99
5.5 How does K ⁺ sensing take place?	100
F F A Adambana and antial and an about Kt anna a	100

5.5.1 Membrane potential as a potent K⁺ sensor 100 5.5.2 Plasma membrane localized K⁺ sensors 102

5.

		5.5.3 Cytoplasmic K ⁺ sensors: an interplay of cytoplasmic	100
		enzymes	103
	5.6	is potassium deficiency a potential stress signals	103
	5./	K as a signal mediator in plants: connecting the dots between K^+ deprivation and Ca^{2+} signaling	104
		5.7.1 Can potassium act as a signaling molecule?	104
		What have we learned so far?	108
		5.7.2 Why is K ⁺ not considered a second messenger?	100
		Does it have the potential gualities to gualify	
		as a second messenger?	110
	5.8	Conclusion and future perspectives	111
	Ack	nowledgments	112
	Refe	erences	112
6.	Exp	loring the relationship between plant secondary	
	me	tabolites and macronutrient homeostasis	119
	Var	and Mass Muns A Ali Kalidass Remamaarthy and	
	Ahr	ned Ismail	
	6.1	Introduction	119
	6.2	Macronutrient cycling in soil	120
		6.2.1 Nitrogen (N) cycling in soil	121
		6.2.2 Phosphorus (P) cycling in soil	122
		6.2.3 Potassium (K) cycling in soil	123
		6.2.4 Sulfur (S) cycling in soil	124
	6.3	Plant-soil interactions: macronutrient sensing, uptake,	
		and regulation	124
		6.3.1 Nitrogen sensing and uptake	126
		6.3.2 Phosphorus sensing and uptake	128
		6.3.3 Potassium sensing and uptake	128
		6.3.4 Sulfur sensing and uptake	129
		6.3.5 Regulations of macronutrients within the circadian clock	130
	6.4	Plant secondary metabolites and their response to soil fertility	131
		6.4.1 Classes of plant secondary metabolities	131
		6.4.2 Response of plant secondary metabolities to soli	122
	6 5	Conclusion	132
	Refe	erences	130
-			
7.		ter and nitrogen fertilization management in	
	ngr	it of climate change: impacts on food security	
	and	l product quality	147
	A.P.	G. Fernandes, J. Machado, T.R. Fernandes,	
	M.V	V. Vasconcelos and S.M.P. Carvalho	
	7.1	Introduction	147
	7.2	Impact of climate change on water resources	150

viii Contents

		7.2.1	The effect of water scarcity on agricultural yield and		
			product quality	150	
		7.2.2	Effect of poor water quality on yield and product quality	154	
	7.3	Nitrog	gen fertilization management in light of climate change	156	
		7.3.1	Effects of low nitrogen levels on yield and nutritional		
			quality	157	
		7.3.2	Effects of high nitrogen levels on the environment,		
			yield, and nutritional quality	159	
	7.4	Overv	view on strategies to enhance water use efficiency		
		and N	l use efficiency and future prospects	160	
	7.5	Concl	usions	163	
	Ack	nowled	lgments	164	
	Refe	erences	•	164	
8.	Soi	lless i	ndoor smart agriculture as an emerging		
	enz	abler f	echnology for food and nutrition security		
		idet el	imate shange	170	
	am	iust ci	imate change	179	
	Aru	n Bane	rjee, Kenny Paul, Alok Varshney, Rajesh Nandru,		
	Rah	ul Badi	hwar, Ajit Sapre and Santanu Dasgupta		
	8.1	Clima	te change and its impact on food and nutrition security	179	
		8.1.1	Climate change and connection to food and nutrition		
			insecurity	182	
		8.1.2	Food security scenario and climate change	182	
		8.1.3	Nutrition security scenario and climate change	183	
		8.1.4	Climate-smart agriculture and soilless cultivation as an		
			"emerging enabler" technology	184	
	8.2	Soille	ss indoor cultivation as climate-smart agriculture	185	
		8.2.1	Controlled environment agriculture and soilless		
			cultivation technology	185	
		8.2.2	Different types of soilless cultivation	186	
	8.3	Soille	ss systems as an enabling technology for food security	192	
		8.3.1	Year-round productivity and yield improvement in		
			soilless cultivation systems	192	
		8.3.2	Improving resource use efficiency—water use		
			efficiency and land surface use efficiency	196	
		8.3.3	Role of microbiome and biostimulants in improving		
			crop performances in soilless systems	199	
	8.4	Soille	ss systems as an enabling technology for nutrition		
		securi	ity	206	
		8.4.1	Healthy and fresh produce through soilless systems	206	
		8.4.2	Improving nutrient use efficiency via biofortification		
			of micronutrients	206	
		8.4.3	Enriching antioxidants, vitamins, and essential		
			nutrients through soilless systems	208	
	8.5	Role d	of precision agriculture and automation for enabling		
	0.0	food	and nutrition security	209	
	1000 and nutrition security 20				

4

5.

		8.5.1 Precision agriculture and automation in context with	
		soilless cultivation system	210
		8.5.2 Automation and IoT tools to manage soilless	
		cultivation systems	211
		8.5.3 Reducing labor costs and contactless farming using	
		modern tools	213
	8.6	Challenges and future perspectives	213
	8.7	Conclusion	214
	Acki	nowledgments	215
	Refe	rences	215
9.	Plai	nt ionomics: toward high-throughput nutrient	
	pro	filing	227
	Δnc.	buman Singh Ashutosh Singh Ram Sewak Tomar	
	Ayu.	shi Jaiswal and Anil Kumar	
	9.1	Introduction	227
	9.2	Concept of ionomics	228
	9.3	Important events in ionomics	228
	9.4	Spectrum of mineral elements	229
	9.5	Mineral acquisition, distribution, and storage in plants	229
	9.6	Mineral interaction in plants	230
	9.7	Element-element interactions	230
	9.8	Element-gene interactions	230
	9.9	Element-environment interactions	230
	9.10	Interaction with mineral chelating or sequestering	
		molecules	231
	9.11	Bioinformatics involved in ionomics	231
	9.12	Different technology used in plant element profiling	232
	9.13	Techniques based on electronic properties of elements	232
		9.13.1 Atomic absorption spectrometry	233
		9.13.2 Optical emission spectroscopy	234
		9.13.3 Ion beam analysis	234
		9.13.4 X-ray fluorescence spectroscopy	234
		9.13.5 Inductively coupled plasma-mass spectrometry	235
	9.14	Techniques based on nuclear properties of atoms	236
		9.14.1 Neutron activation analysis	236
	9.15	Recent advances in plant ionomic techniques	237
	9.16	Applications of plant ionomics	237
	9.17	Paradigm shift from ionome to gene regulating network	238
	9.18	Ionomics in Identifying of QTLs/genes	238
	9.19	Functional validation of gene(s)	240
	9.20	Ionomics for coping with abiotic stresses	241
	9.21	Ionomics for biofortification	243
	9.22	Conclusion and future prospects	243
	Refe	erences	245
	Furt	her reading	252

10.	Cob nutr Arya	alt and itional deep Ro	l molybdenum: deficiency, toxicity, and role in plant growth and development ychoudhury and Swarnavo Chakraborty	255
	10.1	Introdu	action	255
	10.2	Toxicity	y and deficiency of cobalt and molybdenum in	
		plants		257
		10.2.1	Cobalt toxicity and deficiency	257
		10.2.2	Molybdenum toxicity and deficiency	259
	10.3	Role in	plant growth and development	261
		10.3.1	Role of cobalt	261
		10.3.2	Role of molybdenum	263
	10.4	Conclu	sion and future perspectives	266
	Ackn	owledgr	nents	267
	Kelei	rences		26/
11.	inte plan _{Kous}	rplay b It's fate	etween sodium and chloride decides the under salt and drought stress conditions kraborty, Subhankar Mondal, Debarati Bhaduri,	271
	Anki	ta Moha	nty and Alivia Paul	
	11.1	Introdu	iction	271
	11.2	Relative	e impact of dominant ions on plants under ionic	
		stress	A H H H H H H	273
	11.3	Impact	of sodium and other associated cations	277
		11.3.1	Sodium: its role as a nutrient and an osmoticum	-
			in plants under stress	277
		11.3.2	Na uptake and transport under stress	277
		11.3.3	Impact of Na on K and its regulation for	- ÷
			maintaining cellular homeostasis	278
		11.3.4	Interaction between Na and Ca	280
	11.4	Impact	of chloride and other associated anions	281
		11.4.1 11.4.2	Differential accumulation of chloride and its	281
			compartmentalization	282
		11.4.3	Interaction between Cl ⁻ and NO ₃ ⁻	283
	11.5	Regulat	tion of uptake and in-planta movement of	
		Na ⁺ an	d Cl ⁻ ions	283
		11.5.1	Regulation of uptake and in-planta movement of	
			sodium (Na ⁺) ions	283
		11.5.2	Regulation of uptake and in-planta movement of	200
	11 6	Diffore	tial impact of sodium and chlorida on glycorhytes	200
	11.0	haloph	wtes and verophytes	202
		11 6 1	Impact of sodium (Na ⁺) and chlorida (Cl) or	292
		11.0.1	alyconhytes	202
		1160	grycophytes Impact of codium and chlorido on voronhytes	292
		11.0.2	impact of souturn and chilonde on xerophytes	293

	11.6.3	Molecular mechanism of hypertolerance of	
		xerophytes to salt and osmotic stress	295
	11.6.4	Impact of sodium (Na ⁺) and chloride (Cl ⁻) on	
		halophytes	295
	11.6.5	Gene family members that are involved in	
		regulating drought and salinity stress tolerance	296
11.7	Change	es in overall ionomics in plants under Na ⁺ and	
	Ci ⁻ str	ess	297
11.8	Amelio	rative role of sodium and chloride on stress	
	toleran	ice	299
	11.8.1	Priming as an ameliorative technique for drought	
		and salt stress	300
	11.8.2	Halopriming and growth enhancement of seedlings	301
11.9	Conclu	isions	302
Refe	rences		302
Dro	ught ar	nd nitrogen stress effects and tolerance	
mec	hanism	ns in tomato: a review	315
1 1 1	chada	A RC Formandos TR Formandos E Houvelink	0.0
J. IVIA	Vascon	colos and SMP Carvalho	
///. //.	vascon	celos and S.M.F. Calvalno	
12.1	Introdu	uction	315
12.2	Tomato	plant responses to drought stress	316
	12.2.1	Impact on plant growth, yield, and fruit quality	31 7
	12.2.2	Physiological and biochemical mechanisms	
		underlying drought stress and tolerance	322
	12.2.3	Molecular mechanisms underlying drought tolerance	326
12.3	Tomato	o plant responses to nitrogen stress	332
	12.3.1	Impact of nitrogen on plant growth, yield,	
		and fruit quality	332
	12.3.2	Physiological and biochemical mechanisms	
		underlying N stress	335
	12.3.3	Molecular mechanisms underlying nitrogen stress	
		and tolerance	338
12.4	Conclu	isions and future prospects	343
Ackn	owledgr	nents	343
Refei	rences		344
Arse	enic str	ess and mineral nutrition in plants	361
Santa	anu Sam	anta and Aryadeep Roychoudhury	
13.1	Introdu	iction	361
13.2	Effects	of arsenic on plants	362
13.3	Minera	l nutrition in plants	363
13.4	Effect o	of arsenic on mineral nutrition in plants	364
	13.4.1	Nitrogen	364
	13.4.2	2 Phosphorus	365
	13.4.3	B Potassium	366
	 11.7 11.8 11.9 Refer Dromec J. Ma M.W. 12.1 12.2 12.3 12.4 Ackn Refer Arse Santa 13.1 13.2 13.3 13.4 	11.6.3 11.6.4 11.6.5 11.7 Chang Cl ⁻ str 11.8 Amelio toleran 11.8.1 11.8 Amelio toleran 12.1 12.1 Tought at mechanism J. Machado, J. M.W. Vascon 12.1 Introdu 12.2.1 12.2 Tomato 12.2.1 12.2.3 Tomato 12.2.1 12.2.3 Tomato 12.3.1 12.2.3 Tomato 12.3.1 12.3.2 12.3.2 12.3.3 Tomato 12.3.1 12.3.3 Tomato 12.3.1 12.3.3 Tomato 13.1 13.4 Effects 13.3 13.4 Effects 13.4, 13.4, 2 13.4 Effect of 13.4, 13.4, 2	 11.6.3 Molecular mechanism of hypertolerance of xerophytes to sait and osmotic stress 11.6.4 Impact of sodium (Na⁺) and chloride (Cl⁻) on halophytes 11.6.5 Gene family members that are involved in regulating drought and salinity stress tolerance 11.7 Changes in overall ionomics in plants under Na⁺ and Cl⁻ stress 11.8 Ameliorative role of sodium and chloride on stress tolerance 11.8.1 Priming as an ameliorative technique for drought and salt stress 11.8.2 Halopriming and growth enhancement of seedlings 11.9 Conclusions References Drought and nitrogen stress effects and tolerance mechanisms in tomato: a review <i>J. Machado, A.P.G. Fernandes, T.R. Fernandes, E. Heuvelink, M.W. Vasconcelos and S.M.P. Carvalho</i> 12.1 Introduction 12.2 Tomato plant responses to drought stress 12.2.1 Impact on plant growth, yield, and fruit quality 12.2.2 Physiological and biochemical mechanisms underlying drought stress and tolerance 12.3 Molecular mechanisms underlying drought tolerance 12.3.1 Impact of nitrogen on plant growth, yield, and fruit quality 12.3.2 Physiological and biochemical mechanisms underlying N stress 12.3.1 Impact of nitrogen on plant growth, yield, and fruit quality 12.3.2 Physiological and biochemical mechanisms underlying N stress 12.3.3 Molecular mechanisms underlying nitrogen stress and tolerance 12.4 Conclusions and future prospects Acknowledgments References Arsenic stress and mineral nutrition in plants Santanu Samanta and Aryadeep Roychoudhury 13.1 Introduction 13.4.2 Phosphorus 13.4.3 Potassium

		13.4 .4	Calcium	366
		13.4.5	Sulfur	367
	-	13.4.6	Magnesium	367
		13.4.7	Manganese	368
		13.4.8	Boron	368
		13.4.9	Iron	368
		13.4.10	Copper	369
		13.4.11	Zinc	369
	13.5	Conclusi	on and future perspectives	369
	Ackn	owledgm	ents	370
	Refer	ences		370
	Furth	er reading	g	375
14.	Rece	ent adva	nces in micronutrient foliar spray for	
	enha	ancing c	rop productivity and managing abiotic	
	stres	s tolera	nce	377
	Ratna	akumar Pa	asala, Ramesh Kulasekaran, Brij Bihari Pandey,	
	C.H.I	N. Manil	kanta, K. Gopika, P.S. John Daniel,	
	Sonia	a Elthury a	and Praduman Yadav	
	14.1	Micronu	trients	377
	14.2	Micronu	trients as foliar sprays	378
		14.2.1	Boron	378
		14.2.2	Copper	383
		14.2.3	Iron	383
		14.2.4	Manganese	384
		14.2.5	Zinc	385
		14.2.6	Molybdenum	385
		14.2.7	Silica	- 386
	14.3	Micronu	trient use efficiency	386
	14.4	Nano-fo	rm of micronutrients	387
	14.5	Micronu	trients for mitigation of abiotic stresses	387
		14.5.1	Drought	387
		14.5.2	Heat stress	388
		14.5.3	Salinity stress	388
		14.5.4	Cold stress	389
		14.5.5	Light stress	389
	14.6	Cell hon	neostasis and crosstalk between micronutrients	390
	14.7	Enhance	d crop yield and productivity	391
	14.8	Way forv	ward	391
	Refer	ences		392
15.	Biot	echnolo	gical tools for manipulating nutrient	
	hom	eostasis	s in plants	399
	Jorge Clau	Gonzále. dio Inostr	z-Villagra, Marjorie Reyes-Díaz, Zed Rengel and oza-Blancheteau	
	15.1	Introduc	tion	399

	15.2	Biotechnological tools for macronutrient manipulation	400			
		15.2.1 Nitrogen	400			
		15.2.2 Phosphorus	402			
		15.2.3 Potassium	403			
		15.2.4 Calcium	404			
		15.2.5 Magnesium	405			
	15.3	Biotechnological tools for micronutrient manipulation	406			
		15.3.1 Boron	406			
		15.3.2 Manganese	409			
	1 F A	15.3.3 ZINC	411			
	ID.4 Defer		412			
	Kelei	rences	412			
16.	Cro	p biofortification and food security	423			
	Erum	n Shoab and Kathleen Hefferon				
	16.1	Introduction	423			
	16.2	New plant-breeding technologies	423			
	16.3	Agricultural biotechnology to address food insecurity and				
		poverty	424			
	16.4	Crops biofortified with iron and zinc	425			
	16.5	Golden rice and golden bananas	427			
	16.6	Biofortified maize and cassava	429			
	16.7	Nutritionally enhanced tomatoes	429			
	16.8	Future of biofortified crops and importance to global				
		food security	430			
	Refe	rences	432			
	Furth	ner reading	435			
17	Riot	achnological approaches for concrating				
17.	iron	rich groups	42.77			
	Iron	-nei crops	437			
	Samr	riti Mankotia, Jagannath Swain an d Santosh B. Satbhai				
	17.1	Introduction	437			
	17.2	Biofortification methods	439			
	17.3	Transgenic approaches for improving iron content of				
		plants	440			
		17.3.1 Increasing iron content by modifying iron-uptake				
		strategy	440			
		17.3.2 Facilitating iron transport and distribution	441			
		17.3.3 Facilitating iron storage	442			
	17.4	Role of microbes in the biofortification of iron	443			
	17.5	Conclusions and future perspectives				
	Ackn	owledgments	447			
	References					

18.	Use of nanomaterials in plant nutrition Adalberto Benavides-Mendoza	453
	18.1 Introduction	453
	18.2 Fertilizers and their efficiency	455
	18.3 Nanofertilizers and fertilizer nanoadditives	460
	18.3.1 Minor soil fixation, precipitation, or speciation in	
	nonbioavailable forms	468
	18.3.2 Less volatilization and leaching	468
	18.3.3 Creater productivity and viald	400
	18.4 Proc and cons of panofortilizars and panomatorials	470
	19.5 Conducions of handler unzers and handlinaterials	470
	Deferences	474
	References	4/4
19.	Plant beneficial microbes in mitigating the nutrient	
	cycling for sustainable agriculture and food security	483
	Richa Salwan and Vivek Sharma	
	19.1 Introduction	483
	19.2 Plant beneficial microorganisms	484
	19.3 Microorganisms in nutrient recycling	489
	19.4 Nitrogen fixation	489
	19.5 Mineral solubilization by beneficial microbes	492
	19.6 Phosphorus solubilization	493
	19.7 Potassium solubilization	494
	19.8 Siderophore production	496
	19.9 Zinc solubilization	497
	19.10 Phytobormone production	498
	19.10 Application of plant hanaficial microorganisms in	. 400
	agriculture and food socurity	500
	10.10 Conclusion and future means at	500
	19.12 Conclusion and future prospects	501
	Acknowledgments	502
	Keterences	502
	Further reading	512
20	Nutritional imbalance in plants under rising	
	atmospheric CO	E10
	autiospheric CO ₂	513
	Pravesh Kundu, Komal Goel and Gaurav Zinta	
	20.1 Introduction	513
	20.2 Effect of elevated CO ₂ on C3 and C4 plants	514
	20.3 Effect of elevated CO ₂ on photosynthesis	516
	20.4 Effect of elevated CO ₂ on yield and growth	516
	20.5 Effect of elevated CO ₂ on leaf area	518
	20.6 Effect of elevated CO_2 on proteins	518
	20.7 Effect of elevated CO_2 on stoichiometry	519
	······································	

20.8	Effect of elevated CO ₂ on photorespiration	520
20.9	Effect of elevated CO ₂ on nitrogen	521
20.10	Effect of elevated CO ₂ on human nutrition	522
20.11	Effect of elevated CO ₂ on secondary metabolites	523
20.12	Effect of elevated CO ₂ on vitamins	528
20.13	Conclusion	528
References		528

Index

537