The Neurobiology, Physiology, and **Psychology of Pain** The Neuroscience of Pain, Anesthetics,

and Analgesics

Edited by

Rajkumar Rajendram

Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia

College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia

Vinood B. Patel Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London, United Kingdom

Victor R. Preedy King's College London, London, United Kingdom

Colin R. Martin Institute for Health and Wellbeing, University of Suffolk, United Kingdom

An imprint of Elsevier

Contents

Contributors		
Preface		

Part 1 Molecular and cellular aspects

1.	KCNQ/Kv7 channels	as therapeutic
	target to treat neuro	pathic pain

Zizhen Wu and Qing Yang

Introduction	3
KCNQ/Kv7 channel family members	3
KCNQ proteins and function	3
KCNQ channel compositions	4
KCNQ channels in primary sensory neurons	
and their contribution to neuropathic	
pain	5
Primary sensory neurons and neuropathic	
pain	5
KCNQ channels in primary sensory	
neurons	6
Plasticity of KCNQ channels and their	
contribution to neuropathic pain	6
KCNQ channels as therapeutic target	
to treat neuropathic pain	7
KCNQ channels as therapeutic target to treat	
established pain	7
KCNQ channels as therapeutic target to	
prevent the development of	
neuropathic pain	8
Challenges	8
Applications to other areas	9
Other agents of interest	10
Mini-dictionary of terms	10
Key facts of KCNQ/Kv7 channels and	
neuropathic pain	10
Summary points	10
References	10

2. A new mutation in NTRK1 gene is associated with congenital insensitivity to pain without anhidrosis

xv

xxi

Mogge Hajiesmaeil, Fatemeh Yazarlou, Maryam Sobhani, and Soudeh Ghafouri-Fard

Introduction	13
The applications to other areas	19
Mini-dictionary of terms	19
Key facts	20
Summary points	20
References	20

3. Prdm12, a key transcriptional regulator of the nociceptive lineage

Simon Vermeiren, Simon Desiderio, and Eric J. Bellefroid 23 Introduction Painlessness genes 24 Mutations in PRDM12 cause CIP and midface 25 toddler excoriation syndrome Prdm12 is selectively expressed in developing somatosensory ganglia in the nociceptive lineage 26 Prdm12 is essential for the emergence of the entire nociceptive lineage 26 How does Prdm12 function in the specification 26 and maturation of nociceptive neurons? Does Prdm12 play a role in mature 27 nociceptors? Applications to other areas 28 28 Other agents of interest 29 Mini-dictionary of terms Key facts showing the importance of Prdm12 29 in nociceptors 29 Summary points 29 References

4. Genetics of chronic widespread musculoskeletal pain

María Jesús Álvarez-Cubero, Sergio Cuenca-López, Verónica Arenas-Rodríguez, Fernando Estévez-López, and Luis Javier Martínez-González

Introduction	33
Heritability of chronic widespread	
musculoskeletal pain	34
Candidate gene studies in chronic	
widespread musculoskeletal pain	34
Case-control studies	35
Association genotype-phenotype	38
SNPs that has been studied in only one	
analysis in fibromyalgia	38
GWAS	39
Interactions (gene-gene and	
gene-environment)	39
Future perspectives (mainly, research	
agenda)	40
Applications to other areas	41
Mini-dictionary of terms	41
Key facts	41
Summary points	41
References	41

5. Fentanyl: Polymorphisms, and adverse events

Mongi Benjeddou and Ana M. Peiró

Opioid fentanyl use in pain	
management	45
Fentanyl pharmacology	46
Fentanyl safety profile	47
Fentanyl misuse and abuse	48
Potential pharmacogenetics markers in	
fentanyl pain management	49
Candidate genes	50
Barriers to implementation	52
Conclusions	53
Applications to other areas	53
Other agents of interest	53
Mini-dictionary of terms	53
Key facts of fentanyl	54
Summary points	54
References	54

6. Propofol anesthesia and molecular changes in the brain

Desanka Milanović, Željko Pavković, and Vesna Pešić

Introduction	57
Formulation matter	58

Neural and mole	cular targets of	
propofol		58
Propofol-induced	d brain molecular changes	
during postane	esthesia period	59
Molecular change	es that reflect alterations in	
neuronal activi	ty at the peak of brain	
growth spurt		59
Age-dependent pe	eculiarities in the expression	
of neurotrophin	is and their downstream	
signaling pathw	/ays	59
Neuronal activity	and synaptic plasticity	60
Molecular autogr	aph of longer exposures to	
propofol at the	e peak of the brain growth	
spurt		61
Propofol and age	-related brain	
pathology		61
Applications to o	ther areas	61
Other agents of i	nterest	62
Mini-dictionary o		62
	ofol anesthesia and	
	nges in the brain	63
Summary points		64
References		64

7. Protein kinase G is a molecular switch for pain

Ying-Ju Sung and Richard T. Ambron

Introduction	67
Pain is perceived via inputs from nociceptive	
circuits that are adaptive	67
Nociception	67
The acute perception of pain	68
The prolonged perception of pain	68
Long-term potentiation	68
LTH and persistent pain	69
Distinction between persistent and chronic	
pain	70
LTH is induced by protein kinase G, a	
positive injury signal in nociceptive	
neurons	70
PKG-1α is a nociceptive positive injury signal	
for LTH in rats	70
Persistent activity of PKG-1a in sensory	
neurons after nerve injury in rats	71
Development of a novel potent PKG	
inhibitor	72
N46 effectively alleviates chronic	
osteoarthritic and inflammation-induced	
pain	74
Side effects and the fate of N46 in vivo	74
Conclusions	75
Applications to other areas	75
Other agents of interest	75
Mini-dictionary of terms	75

Key facts75Summary points75References76

8. Adrenergic agonists and antagonists enhance opioid receptor activity

Robert Root-Bernstein

Introduction	79
Anatomical and cellular codistribution of	
opioid and adrenergic functions	79
Mechanisms of adrenergic receptor-opioid	
receptor cross-talk	80
Opioids bind to adrenergic receptors	80
Adrenergic compounds bind to opioid	
receptors	80
Opioid receptor-adrenergic receptor	-
heterodimerization	81
A model of adrenoceptor-opioid receptor	
cross-talk	81
Synergistic effects of adrenergic-opioid	
receptor cross-talk in the treatment of	
pain	84
Prevention of desensitization and mutual	
resensitization of opioid and adrenergic	
receptor function by each other's	
ligands -	84
Applications to other areas: Local anesthetic	
enhancement and opioid sparing uses	85
Other agents of interest: Ascorbic acid,	
tramadol and tapentadol, and	
ketamine	85
Mini-dictionary of terms	86
Key facts	86
Summary points	86
References	86

9. Inflammatory and neuropathic pain impact on the opioid function in the mesocorticolimbic system

Yolanda Campos-Jurado, Javier Cuitavi, Natalia Landsberg, Jesús D. Lorente, and Lucia Hipólito

Introduction	91
A short introduction to the opioid	
receptors	92
The endogenous opioid system: A key	
component of analgesia, reward, and	
aversion	92
Chronic pain alters brain function and	
connectivity recruiting motivational and	
emotional regions	92

PET imaging confirms pain-induced	
alterations of ORs in the MCLS during	
pain	94
Preclinical studies show altered MOR	
density or function derived from the	
presence of pain	94
Animal models of pain showed altered	
DA-related behaviors derived from the	
pharmacological activation of MORs	96
Inflammatory pain promotes increased	
opioid self-administration	98
Dynorfin/KOR system (Dyn/KOR) of the	
MCLS: A new key player in pain field	98
Applications to other areas	98
Mini-dictionary of terms	100
Key facts of pain-induced changes in OR	
function	100
Summary points	100
References	100

10. Clinacanthus nutans L., analgesia, and the L-arginine/nitric oxide-mediated/cyclic-guanosine monophosphate-independent pathway

Zainul Amiruddin Zakaria

Introduction	104
Herbal remedies for the treatment of pain	104
Clinacanthus nutans L.	104
Report on findings related to the	
antinociceptive activity of C. nutans	104
Antinociceptive profile of MCNL and the	
possible mechanisms of antinociception	104
Antinociceptive profile of PEP and the	
possible mechanisms of	
antinociception	106
Phytoconstituents of MCNL and PEP	107
Conclusion based on the reported	
antinociceptive activity of MCNL and	
PEP	107
Involvement of peripheral and central	
antinociceptive mechanisms	108
Involvement of various mechanisms of	
antinociception	109
Role of general opioidergic system	109
Involvement of specific opioidergic system	
subtypes	110
Role of nonopioidergic systems	110
Involvement of transient receptor potential	
vanilloid type 1 (TRPV1) receptors,	
glutamatergic system, protein kinase C	
(PKC)-mediated pathway, and	
bradykininergic system	110

Involvement of α 2-adrenergic,	•
β -adrenergic, adenosinergic,	
dopaminergic, or muscarinic cholinergic	
receptor systems	110
Involvement of various types of K ⁺	
channels	111
Role of NO-mediated pathways	111
Applications to other areas	111
Other agents of interest	112
Mini-dictionary of terms	112
Key facts	113
Key facts of analgesia	113
Summary points	113
References	113

 The orally bioavailable imidazodiazepine, KRM-II-81, is a novel potentiator of α2/3-containing GABA_A receptors with analgesic efficacy

Rok Cerne, Jodi L. Smith, Janet L. Fisher, Lalit K. Golani, Daniel E. Knutson, James M. Cook, and Jeffrey M. Witkin

Introduction	117
GABA receptors	117
GABA _A receptor potentiating	
benzodiazepines and pain	118
Alpha 2/3-containing GABA _A receptors	118
KRM-11-81	120
KRM-II-81 and pain	120
Side effect burden	122
Applications to other therapeutic areas	123
Other agents of interest	123
Mini-dictionary of terms	124
Key facts	124
Summary points	124
Acknowledgments	124
Conflict of interest	124
References	124
Further reading	127

12. Extrasynaptic α_5 GABA_A receptors and their role in nociception and pathological pain

Úrzula Franco-Enzástiga, Yarim E. De la Luz-Cuellar, Luis Eduardo Hernández-Reyes, Guadalupe Raya-Tafolla, Jorge E. Torres-López, Janet Murbartián, Vinicio Granados-Soto, and Rodolfo Delgado-Lezama Introduction GABA_A receptors

129

130

Expression of α ₅ GABA _A receptors at spinal cord and DRG	130
GABAergic tonic current in the spinal	
cord	130
GABAergic tonic current in spinal cord in	
mammals	132
Extrasynaptic α_5 GABA _A receptors in the	
rate-dependent depression (RDD) of the	
Hoffmann reflex (HR)	132
Function of extrasynaptic α_5 GABA _A	
receptors in primary afferent fibers	133
Extrasynaptic spinal α_5 GABA _A receptors in	
pain	133
Extrasynaptic α_5 GABA _A receptors	
regulation	133
Applications to other areas	133
Other agents of interest	135
Mini-dictionary of terms	135
Key facts on α_5 GABA _A receptors in pain	135
Summary points	135
Acknowledgments	136
References	136

13. ATP-sensitive potassium channels in pain and analgesia

Taís de Campos Lima, Débora de Oliveira Santos, and Celina Monteiro da Cruz Lotufo

ATP-sensitive potassium channels (Katp)	139
Possible role for Katp channels in primary	105
nociceptive neurons during	
hyperglycemia	141
Katp involvement in the mechanisms of	
analgesic substances	143
Application to other areas	146
Other agents of interest	146
Mini-dictionary of terms	146
Key facts	146
Summary points	147
References	147

14. Astrocyte-neuron lactate shuttle and pain

Keisuke Miyamoto and Masahiro Ohsawa

Introduction	151
Applications to other areas	154
Other agents of interest	154
Mini-dictionary of terms	156
Key facts	157
Key facts of astrocyte-neuron lactate shuttle	157
Summary points	157
References	157

189

15. Nociception and sweet solutions: Applications to inflammatory pain

Khawla Q. Nuseir, Manal Kassab, and Ahmad Altarifi

Introduction	161
Inflammatory pain pathways	162
Pain behaviors and assessment	163
Use of sweet solutions for inflammatory	
pain	163
Mechanisms of sweet solutions for	
inflammatory pain	164
Sweet tasting solutions used for	
analgesia	164
Clinical applications	164
Importance of treatment of neonatal	
pain	165
Applications to other areas	165
Other agents of interest	165
Other agents of interest	166
Mini-dictionary of terms	166
Key facts	166
Key facts of prematurity	166
Summary points	166
References	167

16. Interlinking interleukin-33 (IL-33), neuroinflammation and neuropathic pain

Camila Rodrigues Ferraz, Fernanda Soares Rasquel-Oliveira, Sergio Marques Borghi, Anelise Franciosi, Thacyana Teixeira Carvalho, Telma Saraiva-Santos, Nayara Anitelli Artero, Rubia Casagrande, and Waldiceu A. Verri, Jr.

IL-33	172
Neuropathic pain and glial cells	173
IL-33 and glial cells	174
Oligodendrocytes	174
Microglia	175
Astrocytes	176
Applications to other areas	176
Other agents of interest	177
Mini-dictionary of terms	177
Key facts of IL-33 in neuropathic pain	177
Summary points	178
Funding	178
References	179

17.	Neurons of the parabrachial nucleus, nociceptive input, and pain pathways	v
	Yosuke Arima, Yoshinori Otani, and Masashi Fujitani	·
	Introduction	184
	Anatomy of the PBN	185
	Afferent pain transmitting pathways to the LPB	186
	Nociceptive neurons in the LPB and their aversive pathway to amygdala and bed nucleus of the stria terminalis (BNST)	186
	CGRP-positive neurons in the PBel	187
	Nociceptive neurons in the LPB and their autonomic connection with the	10/
	hypothalamus	187
	Pain-modulating pathways from the LPB	187
	Conclusion	188
	Applications to other areas	188
	Mini-dictionary of terms	189
	Summary points	189

18. Anterior cingulate cortex, pain perception, and pathological neuronal plasticity during chronic pain

References

Fernando Kasanetz, Mario A. Acuña, and Thomas Nevian

Introduction	193
ACC is a critical hub linking neuronal circuits	
for nociception and emotion	194
ACC activation is associated with the	
affective component of pain	194
ACC neuronal activity mediates	
pain-induced negative affect	195
Nociception-related neurons in the	
ACC	196
Distinct cortical representation of acute	
and chronic pain	197
Pathological neuronal plasticity in the ACC	
associated to chronic pain	198
Applications to other areas	198
Interfering with pathological cortical plasticity as	
a therapeutic approach for chronic pain	198
Other agents of interest	199
Anterior insular cortex and pain affect	199

Mini-dictionary of terms	200
Key facts	200
Key facts of neuronal plasticity in health and	
disease	200
Summary points	200
References	201

19. Sleep deprivation, headache, and Fos immunohistochemistry

Seonghoon Kim and Jeong-wook Park

Introduction	203
Pain, headache, and sleep deprivation	203
The pathophysiologic relationship between	
sleep deprivation and headache	204
Modulation of headache and sleep-wake	
cycles	204
Headache	204
Sleep	205
Pharmacologic relationships between	
headache and sleep	205
Adenosine	205
Orexin	206
Melatonin	207
Pituitary adenylate cyclase activating	
peptide (PACAP)	207
Experimental research to examine headache	
and sleep deprivation	207
Fos-immunohistochemistry	207
Animal model of sleep deprivation	208
Animal model of headache (activation of the	
trigeminovascular system)	210
Experimental studies of sleep deprivation	
and headache pain	211
Applications to other areas	213
Mini-dictionary of terms	213
Key facts	213
Key facts of sleep deprivation and	
headache	213
Summary points	213
References	213

20. Antinociceptive glucagon-like peptides

Duygun Altıntaş Aykan

Introduction to the glucagon-like	
peptides	218
Applications to other areas	218
Glucagon-like peptide-1 and its analogs	219
Glucagon-like peptide-2	221
Other agents of interest	222
Mini-dictionary of terms	223

	Key facts of glucagon-like peptides Summary points References	223 223 223
21.	Pain transmission and peripheral group III metabotropic glutamate receptors (mGluRs)	
	Eui Ho Park and Hee Chul Han	
	Introduction Glutamate metabolism in peripheral	228
	nervous system	228
	Glutamate release and pain	228
	Glutamate receptor signaling: iGluR and	220
	mGluR	229
	Localization of peripheral group III	
	mGluR	229
	Negative modulation of pain	
	transmission	230
	Group III mGluRs in non-neuronal glial	
	cells	233
	Applications to other areas	234
	Other agents of interest	235
	Mini-dictionary of terms	235
	Key facts of activity-dependent	
	inhibition	235
	Summary points	235
	References	236

22. TRPM8 receptor and menthol in pain management

Hannu Kokki and Merja Kokki

Introduction	239
Transient receptor potential channels	240
Menthol	240
Multimodal pain therapy	241
Posttraumatic and postoperative pain	244
Musculoskeletal pain	244
Neuropathic pain	245
Headache and migraine	246
Pregnant and lactating women	246
Children and adolescent	247
Elderly	247
Obesity	247
Other agents of interest	247
Applications to other areas	248
Mini-dictionary of terms	248
Key facts of TRPM8 receptor and	
menthol	249
Summary points	249
References	249
Further reading	251
-	

Part II Physiology, imaging and physical recordings

23. Anesthetic and proconvulsant effects of ketamine on EEG

Shaila Gowda and Charles Akos Szabó

Introduction	255
Ketamine effects as anesthetic	256
Ketamine effects as proconvulsant	257
EEG analysis of ketamine effects	257
Scalp vs intracranial EEG effects of ketamine	
in nonhuman primate model of an	
idiopathic generalized epilepsy	258
Effects of other agents on EEG	259
Key facts of anesthetic and proconvulsant	
effects of ketamine on EEG	261
Summary points	261
References	261

24. Electroencephalography and anesthetic doses of ketamine

Logan Voss and Jamie Sleigh

Introduction	265
Spectral EEG changes	265
Connectivity metrics	267
Neurophysiological underpinnings of the EEG	
effects of ketamine	268
Interactions between ketamine and other	
hypnotic drugs	269
Applications to other areas	270
Other agents of interest	270
Mini dictionary of terms	271
Key facts	271
Summary points	271
References	272

25. Linking heart function and analgesia

Giorgia	Saltelli, An	tone	lla Paladii	ni,
Martina	Rekatsina,	and	Giustino	Varrassi

Introduction	275
Analgesic drugs	276
Opioids	276
NSAIDs	277
Paracetamol	282
Application to other areas: Effects of NSAIDs	
on the kidney	282

Other agents of interest: Adjuvants	282
Mini-dictionary of terms	283
Summary points	284
References	284

26. Computed tomography-guided procedures for epidural injections

Rohit Aiyer and Semih Gungor

Introduction	287
General principles and technique common	
to all types of CT-guided epidural	
injections	287
Patient positioning	287
Three phases of CT-guided interventions	287
Epidural injections	289
Interlaminar epidural injections	290
Cervical transforaminal epidural steroid	
injections	290
Thoracic transforaminal epidural steroid	
injections	291
Lumbar transforaminal steroid injections	292
Radiation safety	294
Complications	294
Conclusion	295
Applications to other areas	295
Other agents of interest	295
Mini-dictionary of terms	296
Key facts	296
Summary points	296
References	296

27. Chronic pain: Linking deep brain stimulation and sensory functional MRI

Witold H. Polanski and Johann Klein

299
299
300
301
302
302
303
303
303
303
304
304
304

28. Neurocognition and placebo analgesia: Linking in functional magnetic resonance imaging

Sara Palermo

Introduction	307
	307
Understanding the placebo effect: From the	
biological approach to the advent of	200
neuroimaging techniques	308
Pain modulatory mechanisms relevant for	
the neuroimaging study of PA	309
Pain and nociceptive stimuli in	
neuroimaging study of PA	309
Pain evaluation and temporal phases in	
neuroimaging study of PA	310
Sample characteristic relevant for the	
neuroimaging study of PA	310
Neurocognitive predictors in neuroimaging	
study of PA: Attention, expectation, and	
reappraisal	311
The neuroimaging meta-analytic approach	
to the study of PA and related	
neurocognitive factors	312
Neuroimaging findings in the study of PA in	
Alzheimer's disease	313
Future directions	313
Applications to other areas	313
Other agents of interest	314
Mini-dictionary of terms	314
Key facts of functional magnetic resonance	514
	314
imaging Summany points	314
Summary points	
References	315

29. Linking the cortex, functional spectroscopy, and pain: Features and applications

Wolnei Caumo, Janete S. Bandeira, and Jairo Alberto Dussan-Sarria **Basic concepts** Cortical functions related to pain processing Role of the motor cortex in pain processing Role of the PFC in pain processing Nature of brain regions recruited during pain: Insights from human imaging studies The biological rationale behind near-infrared spectroscopy fNIRS neuroimaging: Technical aspects, advantages, limitations, and applications

	The sequence of steps to perform neuroscience studies using fNIRS Dynamic trace pattern evoked by electrical	326
	stimulation	327
	Applications of fNIRS in pain research	327
	fNIRS and cortical connectivity in pain	
	research	330
	Remarks and future directions	331
	Applications to other areas	331
	Mini-dictionary of terms	332
	Key factors related to fNIRS	332
	Summary points	332
	References	333
30.	Muscle origins of myofascial pain syndrome	
	Eva María Martínez-Jiménez, Daniel López-López, Carlos Romero-Morales, Victoria Mazoteras-Pardo, Marta Elena Losa-Iglesias, David Rodríguez-Sanz, Marta San-Antolín-Gil, Ricardo Becerro-de-Bengoa-Vallejo, and César Calvo-Lobo	
	Introduction	337
	Nociception in muscle tissue	338
	Referred pain and peripheral sensitization	
	process	339
	Sympathetic facilitation of muscle pain	339
	Central sensitization	339
	Clinical applications	342
	Conclusion	342
	Application to other areas	342
	Other agents of interest	342
	Mini-dictionary of terms	342
	Key facts of myofascial pain	343
	Summary points	343
	References	343

320 Part III

322

320 Psychology and behavior

31. Behavioral markers of pain: Understanding the cognitive, motor, and societal interactions in the pain experience

S.A. Holmes, A. Quinlan, and M.E. Pierce

322	Psychology and cognition	349
	Fear avoidance	349
	Pain catastrophizing	349
323	Cognitive performance	350

Comorbidities and chronic pain	350
Motor behavior	351
Motor response to pain	351
Changing our motor behaviors	351
Social interactions and pain behavior	
convention	352
Social interaction	352
Community structure—Access to resources	353
Biological sex and gender	353
What is coming in the next 5–10 years?	354
Conclusion	354
Application to other areas	355
Other agents of interest	355
Mini-dictionary of terms	355
Key facts	355
Summary points	356
References	356

32. Adverse life events, sensitization of spinal nociception, and chronic pain risk

Jamie L. Rhudy and Natalie Hellman

Adverse life events: A definition	359
Adverse life events and health	359
Adverse life events and chronic pain	359
The impact of adversity (stress) on	
nociception in animals	360
Pain systems and their assessment in	
humans	360
Adversity and pain processing in	
humans	361
Adversity, latent sensitization, and pain	
risk	368
Implications and future directions	369
Summary	370
Applications to other areas	371
Other agents of interest	371
Mini-dictionary of terms	371
Key facts about adversity	371
Summary points	371
Conflict of interest	372
References	372

33. Cognitive-affective modulation of pain: The placebo and nocebo phenomena and their impact on pain treatment

Sergiu Albu, Hans Linsenbardt, and Mary W. Meagher

Introduction	375
Psychological mechanisms of placebo	
analgesia and nocebo hyperalgesia	376

Neurobiological and neurochemical	
mechanisms of placebo analgesia and	
nocebo hyperalgesia	377
The relevance of placebo and nocebo	
effects for pain treatment in clinical	
practice	380
Applications to other areas	382
Placebo and nocebo phenomena related to	
nonopioid drugs and implications for pain	
treatment	382
Other agents of interest	382
Role of cognitive behavioral therapy in	
placebo/nocebo and pain treatment	382
Mini-dictionary of terms	383
Key facts of placebo analgesia	383
Key facts of nocebo hyperalgesia	384
Summary points	384
References	385

34. Nociception-related behavioral phenotypes in adult zebrafish

Fabiano V. Costa, Luiz V. Rosa, Allan V. Kalueff, and Denis B. Rosemberg

Introduction	387
Nociception and pain in animal models	387
Zebrafish as animal model for	
translational pain research	388
Zebrafish-based pain models	389
Applications to other areas	390
Other agents of interest	390
Mini-dictionary of terms	391
Key facts	391
Key facts of zebrafish	391
Summary points	391
References	391

35. Pain, implantable pain devices, and psychosocial aspects of pain

Vishal Varshney, Thomas Rutledge, Maya D'Eon, and Krishnan Chakravarthy

Anatomy of pain pathways	395
Psychosocial aspects of neuropathic	
pain	396
Rationale for psychosocial evaluations	397
Effect of spinal cord stimulation on pain	
processing	398
Effects of modes of stimulation on	
psychosocial aspects of pain	399
Conclusions	400
Application to other areas	401
Other agents of interest	401
Mini-dictionary of terms	401

Key facts of pain, implantable devices, and		Other agents of interest	412
psychosocial aspects of pain	401	Mini-dictionary of terms	412
Summary points	402	Key facts of myofascial pain	412
References	402	Summary points	412
		References	412

405

405

36. Influence of psychological factors on myofascial pain

Marta San-Antolín-Gil, Daniel López-López, Ricardo Becerro-de-Bengoa-Vallejo, Marta Elena Losa-Iglesias, Carlos Romero-Morales, David Rodríguez-Sanz, Victoria Mazoteras-Pardo, Eva María Martínez-Jiménez, and César Calvo-Lobo

Introduction
Myofascial trigger point types
Relationship between psychological factors
and myofascial pain
Personality traits and myofascial pain
Anxiety and myofascial pain
Depression and myofascial pain
Catastrophism and myofascial pain
Pain fear-avoidance and kinesiophobia and
myofascial pain
Central sensitization and myofascial pain
Clinical applications
Application to other areas

P	а	r	t	I	١	V	
n	_	_	_		_		_

Resources

37. Recommended resources, sites, and research groups for the neuroscience of anesthetics and analgesics

.

Rajkumar Rajendram, Vinood B. Patel, and Victor R. Preedy

406	Introduction	419
406	Resources	420
408	Applications to other areas	420
409	Mini-dictionary of terms	424
409	Key points	425
	Summary points	425
410	Acknowledgments	425
411	References	426
411		
412	Index	427

427