CONTENTS

Preface	хi	Key concepts	31
		Questions	32
CHAPTER 1 THE IMPORTANCE OF PLANTS AND PLANT ECOLOGY	1	Key bibliography	32
1.1 Plants are central to any terrestrial ecological study 1.2 Photosynthesis is essential for all life	3 5	CHAPTER 2 THE IMPACT OF HUMA COLONISATION ON THE PLANT COMMUNITIES OF THE WORLD	AN 35
1.2.1 Plants form the soil	6		33
1.2.2 Climate determines plant distribution, and plants influence climate	7	2.1 Most of the largest land vertebrates of the world are extinct	35
1.2.3 Plants store carbon	9	2.2 The tundra vegetation today looks quite different from pre-human times	37
1.2.4 Vital nutrients are cycled by plants	10	2.3 Fire has been promoted by human colonisation	38
1.2.5 Plants can regulate the hydrological cycle, mitigating floods and droughts	11	2.4 The start of agriculture led to much greater changes to vegetation	40
1.2.6 Pollution can be mitigated by plants	12		40
1.3 Plants deliver vital ecosystem services	12	2.4.1 European-style agriculture spread across the world	41
1.4 Plants cover much of the earth	15	2.4.2 Arable farming has led to monoculture	42
1.5 There are some general trends in species diversity	17	2.4.2 Pasture has been formed with domestic animals	45
1.5.1 Plant diversity differs between the temperate regions	18	2.4.3 Pasture has declined in places within the last century	48
1.6 Plants form phytogeographic kingdoms	21	2.4.4 Intense grazing is frequently	
1.6.1 There are differences and similarities between biomes on different continents	22	a problem too 2.5 The temperate forests that remained have	50
1.6.2 Why do the phytogeographic regions differ?	24	been modified	51
1.6.3 Pleistocene glaciations have affected plant distribution	25	2.6 Much of the tropical rainforest has been destroyed	54
1.6.4 Glaciations made the warmer regions of the world drier	27	2.7 Industry brought more destruction of ecosystems	55
1.7 We need to study plant ecology	29	2.8 Forestry, especially with conifers and Eucalyptus, has been introduced to many places	56

2.9 Fresh water ecosystems have seen serious decline	57	3.15 Ferns and mosses have rather different features	95
2.10 Plants have been introduced across the world	58	Key concepts	95
		Questions	96
2.10.1 Introductions have particularly damaged isolated ecosystems	59	Key bibliography	97
2.10.2 Introductions add diversity too	62		
2.11 The effects of humans have been huge and irreversible	64	CHAPTER 4 REPRODUCTION	99
Key concepts	64	4.1 Hermaphrodite flowers allow greatest flexibility	99
Questions	66	4.1.1 Many hermaphrodite flowers cannot	
Key bibliography	66	fertilise themselves	100
		4.1.2 Self-fertilisation can have advantages too	102
CHAPTER 3 POPULATIONS	69	4.2 A wide range of plants is dioeclous	104
3.1 Plants are forever young	69	4.2.1 Males and females may have different ecological requirements	105
3.2 How long do plants live?	70	4.2.2 There are several more unanswered	
3.3 Some plants are known as "annual"	72	questions about dioecious plants	105
3.3.1 Annuals have certain characteristics in common	73	4.3 Some dominant plants are monoecious	106
3.4 Some longer-lived plants only flower and		4.4 Some plants have other breeding systems	107
set seed once	75	4.5 Wind-pollination is widespread, especially among dominant plants	108
3.4.1 Semelparous plants can wait for several years before flowering	76	4.6 Insect-pollination is one of the most striking features of flowering plants	109
3.5 Most herbaceous perennials flower more than once	78	4.7 Several other animals are important pollinators	111
3.6 Some iteroparous plants form clones	82	4.8 Plants and their pollinators have evolved	
3.6.1 Some species can form clones in their flowering heads	84	together	111
3.7 Most woody perennials flower	•	4.9 Animal pollination has some further consequences	114
repeatedly	85	4.10 Pollination has become an important	
3.8 Trees frequently have populations of similar-aged individuals	86	cause in conservation	116
3.9 How do plant populations work?	87	4.11 Seeds vary as much as flowers	117
3.10 A dense population will undergo	67	4.12 Seeds have various features to facilitate dispersal	119
self-thinning	88	4.12.1 How far do seeds go?	121
3.11 There are many complications with recruitment	89	4.12.2 Animal dispersal may have other consequences	123
3.12 When should a plant flower?	89	4.13 Bryophytes and ferns disperse with spores	123
3.13 Clonal growth has advantages and		Key concepts	125
disadvantages	91	Questions	125
3.14 There can be particular problems with rare plants	94	Key bibliography	126

		CONTENTS	vii
CHAPTER 5 VARIATION AND EVOLUTION	129	6.1.4 Photosynthesis leads to carbon sequestration	161
5.1 Plants of one species differ in different conditions	131	6.2 Water is essential for all the functions within a plant	162
5.2 There can be much variation within populations too	132	6.2.1 How do plants normally obtain and transport their water?	162
5.2.1 There are several methods of detecting genetic variation	133	6.2.2 Plants in dry places need to conserve water	164
5.3 Plants vary in their chromosome numbers	135	6.2.3 Plants must transpire but in high humidity it can be limited	167
5.4 Plants frequently form hybrids	136	6.2.4 Some plants live in the water	167
5.4.1 Polyploidy can lead to fertility	400	6.3 There are plants that tolerate salt	169
in hybrids 5.5 There may be other forms of rapid evolution	138 140	6.4 Temperature affects plant distribution profoundly	172
5.6 Variation is not evenly distributed within		6.5 There are many different types of soil	172
and between populations	141	6.6 Plants use raw chemicals	174
5.6.1 It is possible to measure gene flow and heterozygosity	143	6.6.1 The most important element is nitrogen	175
5.7 is there a minimum number of individuals for populations to be viable?	144	6.6.2 Phosphorus is another nutrient that is often limiting	177
5.8 Many introductions have little genetic		6.6.3 Other nutrients are vital	177
variation	145	6.7 Some minerals are toxic	178
5.9 There have been several attempts to define species	146	6.8 Plants affect their environment as well	179
5.10 Species and genera differ in their diversity	148	6.9 Plants can be adaptable	181
5.11 Endemic species differ greatly in the amount of genetic variation that is present	149	Key concepts	181
5.12 The amount of variation in a species has		Questions	182
implications for conservation	151	Key bibliography	183
Key concepts	152		
Questions	153	CHAPTER 7 INTERACTIONS:	
Key bibliography	153	MUTUALISTIC	185
		7.1 Nitrogen fixation	185
CHAPTER 6 REQUIREMENTS FOR		7.1.1 Free-living bacteria help plants	185
PLANT LIFE	155	7.1.2 Cyanobacteria also form intimate mutualisms	186
6.1 Photosynthesis is the central reaction in plants	155	7.1.3 Bacteria in root nodules form the most important N-fixing mutualism	187
6.1.1 Some plants fix carbon with a four-carbon acid; the C4 plants	157	7.1.4 The actinomycetes are another ecologically significant group	190
6.1.2 Fixing carbon at night can avoid problems of dehydration	159	7.1.5 Nitrogen fixation has ecological consequences	191
6.1.3 Leaves are different in the shade and		7.1.6 The association is not always	

159

mutualistic

the sun

193

7.2 Plants and fungi	193	8.3 Plants produce secondary compounds that deter herbivores	220
7.2.1 Mycorrhizae are everywhere	193	8.3.1 But do they protect the plants?	221
7.2.2 The majority of mycorrhizae are arbuscular	195	8.3.2 Interactions with insects can be used	22,
7.2.3 Ectomycorrhizae form extensive		as biological control	223
networks in forests	197	8.3.3 Does insect herbivory matter for the plant?	224
7.2.4 Ericoid mycorrhizae are even more extreme	198	8.3.4 A few plants turn the tables on insects	226
7.2.5 Mycorrhizae can have a large impact	130	8.4 Fungi, oomycetes, bacteria, mycoplasmas	
on primary production	199	and viruses attack plants	227
7.2.6 Mycorrhizae may show an ecological succession	199	8.4.1 Exotic diseases lead to large conservation problems	230
7.2.7 Mycorrhiza affect the balance of plant species in a community	200	8.5 Galls can be produced in response to an invader	230
7.2.8 Can mycorrhizae transfer nutrients		8.6 Some plants are parasites on other plants	231
between plants?	202	8.7 How do the various antagonistic	4-4
7.2.9 Mycorrhizae affect human-dominated ecosystems	203	interactions affect the plant community?	233
7.2.10 Mycorrhizae are still little known	204	Key concepts	235
7.3 Endophytes and other fungal relationships		Questions	236
may influence plants	204	Key bibliography	236
7.4 Ants form mutualisms with plants	205		
7.4.1 Ants are defenders of some tropical	205	CHAPTER 9 INTERACTIONS	
plants	205	BETWEEN PLANTS	239
7.4.2 Ants can supply extra nutrients to epiphytes	208	9.1 Plants compete	239
7.5 There are other interactions	209	9.1.1 A plant's competitors are its neighbours	240
Key concepts	210	9.1.2 There have been many experiments on competition	241
Questions	211	9.1.3 Plants may compete for any combination	
Key bibliography	211	of light, water or nutrients in woods	243
		9.1.4 Nutrients are often limiting in open habitats	244
CHAPTER 8 INTERACTIONS:		9.2 There are several theories about plant	
ANTAGONISTIC	215	competition	245
8.1 The most important herbivores in open habitats are the big ones	215	9.2.1 Observation has confirmed some of these ideas	247
8.1.1 Domestic mammals have changed	246	9.3 Competitive differences can arise by chance	248
habitats	216	9.4 The most vulnerable stage in a plant life	
8.1.2 The ecological effects of grazers are variable	217	cycle will be as a seedling	249
8.1.3 The plants respond to herbivores	219	9.5 Plants can facilitate each other as well as compete	249
8.2 Numerous invertebrates are herbivorous	219	9.6 Epiphytes can be numerous	252

9.7 It is possible that some plants have an allelopathic effect	254	10.11 Woodland communities have changed in recent years	281
9.8 Other interactions affect the outcome of competition	255	10.11.1 Some plant species are indicators of ancient habitat	281
9.9 Plants can react to changing light conditions	255	Key concepts Ouestions	282 283
9.10 Plants can communicate with each other	256	Key bibliography	284
Key concepts	257	ne, albueg.cpm,	20,
Questions	258		
Key bibliography	258	CHAPTER 11 THE FUTURE FOR PLANT ECOLOGY AND	
		CONSERVATION	287
CHAPTER 10 PLANT		11.1 Was there ever a "balance of nature"?	288
10.1 We can divide diversity into three	261	11.2 We want to conserve the habitats and plants that have meaning for us	289
components	262	11.3 There is a mismatch in distribution	
10.2 Nutrient levels affect plant diversity	263	between conservation ideas and biodiversity	292
10.3 There are several methods for studying plant communities and diversity	265	11.4 Grazing is one of the central problems of conservation	293
10.4 Plant communities can develop through successional stages	267	11.4.1 Achieving a suitable grazing pressure is essential	293
10.5 Does climax vegetation actually exist?	268	11.5 Introduced plants can be damaging	295
10.6 There are two main groups of models to		11.6 Reintroductions have been effective	296
explain the diversity of rainforests 10.6.1 Some rainforests show dominance	269	11.7 Assisted migration and "re-wilding" are being considered	298
by a single tree species	271	11.8 The world is always changing	298
10.7 Periodic extreme events can have a dominant effect on plant communities	273	Key concepts	299
10.8 Plant communities do have some autonomy	276	Questions	300
10.9 Plant communities may be unpredictable	279	Key bibliography	300
10.10 The history of grazing affects plant		Glossary	301
distribution	280	Index	307