Table of content

I Original publications within this habilitation theses p. 4

II List of abbreviations p. 6

1 Introduction p. 7

1.1 Atherosclerosis as main cause of cardiovascular diseases p. 7

1.2 Chemokines in inflammation and atherosclerosis p. 9

1.2.1 CCL2-CCR2 axis p. 9

1.2.2 CCL5-CCR5/CCR1 axis p. 10

1.2.3 CCL12-CXCR4/ACKR3 axis p. 11

1.3 Adipose tissue as diver of atherosclerosis p. 13

1.3.1 Chemokines and AT lipid accumulation and inflammation p. 14

1.3.2 The calcium-sensing receptor and AT lipid accumulation and inflammation p. 15

1.4 MicroRNA-26b as regulator of platelet adhesion and thrombosis p. 16

1.5 AMI as clinical outcome of atherosclerosis development p. 18

1.6 PCSK9 as novel therapeutic approach p. 20

2 Aims of this habilitation thesis p. 22

3 Results p. 24

3.1 Reference I: CXCL12 derived from endothelial cells promotes atherosclerosis to drive coronary artery disease. p. 24

3.2 Reference II: B-cell specific CXCR4 protects against atherosclerosis development and increases plasma IgM levels. p. 25

3.3 Reference III: Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium. p. 26

3.4 Reference IV: Adipocyte-specific ACKR3 regulates lipid levels in adipose tissue. p. 27

3.5 Reference V: Adipocyte calcium sensing receptor is not involved in visceral adipose tissue inflammation or atherosclerosis development in hyperlipidemic Apoe^{−/−} mice. p. 28

3.6 Reference VI: MicroRNA-26b attenuates platelet adhesion and aggregation in mice. p. 29

3.7 Reference VII: CCR6 deficiency increases infarct size after murine acute myocardial infarction. p. 30

3.8 Reference VIII: PCSK9 imperceptibly affects chemokine receptor expression in-vitro and in-vivo. p. 31