Table of content

I	Original publications within this habilitation theses	p. 4
11	List of abbreviations	p. 6
1	Introduction	p. 7
1.1	Atherosclerosis as main cause of cardiovascular diseases	p. 7
1.2	Chemokines in inflammation and atherosclerosis	p. 9
	1.2.1 CCL2-CCR2 axis	p. 9
	1.2.2 CCL5-CCR5/CCR1 axis	p. 10
	1.2.3 CCL12-CXCR4/ACKR3 axis	p. 11
1.3	Adipose tissue as diver of atherosclerosis	p. 13
	1.3.1 Chemokines and AT lipid accumulation and inflammation1.3.2 The calcium-sensing receptor and AT lipid accumulation	p. 14
	and inflammation	p. 15
1.4	MicroRNA-26b as regulator of platelet adhesion and thrombosis	p. 16
1.5	AMI as clinical outcome of atherosclerosis development	p. 18
1.6	PCSK9 as novel therapeutic approach	p. 20
2	Aims of this habilitation thesis	p. 22
3	Results	p. 24
3.1	Reference I: CXCL12 derived from endothelial cells promotes	
	atherosclerosis to drive coronary artery disease.	p. 24
3.2	Reference II: B-cell specific CXCR4 protects against atherosclerosis	
	development and increases plasma IgM levels.	p. 25
3.3	Reference III: Endothelial ACKR3 drives atherosclerosis by promoting	
	immune cell adhesion to vascular endothelium.	p. 26
3.4	Reference IV: Adipocyte-specific ACKR3 regulates lipid levels in	
	adipose tissue.	p. 27
3.5	Reference V: Adipocyte calcium sensing receptor is not involved in	
	visceral adipose tissue inflammation or atherosclerosis development in	
	hyperlipidemic Apoe ^{-/-} mice.	p. 28
3.6	Reference VI: MicroRNA-26b attenuates platelet adhesion and	
	aggregation in mice.	p. 29
3.7	Reference VII: CCR6 deficiency increases infarct size after murine	
	acute myocardial infarction.	p. 30
3.8	Reference VIII: PCSK9 imperceptibly affects chemokine receptor	24
	expression in-vitro and in-vivo.	p. 31

4	Discussion	p. 32
4.1	Novel cell-type specific insights into the role of chemokines and	
	chemokine receptors in atherosclerosis and myocardial infarction	p. 32
	4.1.1 Chemokine(receptor)s in atherosclerosis	p. 32
	4.1.2 Chemokine(receptor)s in atherosclerosis-related pathologies	p. 35
	4.1.3 Clinical implications for chemokine(receptor)s	p. 37
4.2	CaSR a novel modulator of inflammation and cardiovascular health	p. 38
4.3	MiR-26b as key player in platelet adhesion and aggregation	p. 39
4.4	Exploring the interaction between PCSK9 and chemokine receptors	p. 40
4.5	General conclusion and perspectives	p. 42
5	Summary	p. 45
6	References	p. 47
III	Original publications used for this habilitation thesis	p. 64
III. 1	Reference I	p. 64
III.2	Reference II	p. 69
III.3	Reference III	p. 71
111.4	Reference IV	p. 93
III.5	Reference V	p. 106
III.6	Reference VI	p. 117
III.7	Reference VII	p. 132
8.111	Reference VIII	p. 143
IV	Acknowledgement	p. 160
V	Curriculum Vitae	p. 161
VI	Publication list	p. 165