Contents

5

1	Intr	oduction	1			
2	Preliminaries					
	2.1	Basic Facts, Notation, and Conventions	7			
	2.2	Known Results Involving $a(x)$	11			
	2.3	Domain of Attraction	13			
	2.4	Relative Stability, Distribution of Z and Overshoots	14			
		2.4.1 Relative Stability	14			
		2.4.2 Overshoots and Relative Stability of Z	15			
	2.5	Overshoot Distributions Under (AS)	16			
	2.6	Table for Modes of the Overshoot $Z(R)$ Under (AS)	17			
3	Bou	Bounds of the Potential Function				
	3.1	Statements of Results	19			
	3.2	Auxiliary Results	23			
	3.3	Proofs of Theorems 3.1.1 to 3.1.3	31			
		3.3.1 Proof of Theorem 3.1.1	31			
		3.3.2 Proof of Theorem 3.1.3	34			
	3.4	Proof of Proposition 3.1.5	36			
	3.5	Proof of Theorem 3.1.6 and Proposition 3.1.7	39			
	3.6	An Example Exhibiting Irregular Behaviour of $a(x)$	45			
4	Some Explicit Asymptotic Forms of $a(x)$					
	4.1	Relatively Stable Distributions	51			
	4.2	Distributions in Domains of Attraction	56			
		4.2.1 Asymptotics of $a(x)$ I	57			
		4.2.2 Asymptotics of $a(x)$ II	62			
	4.3	Asymptotics of $a(x + 1) - a(x)$	68			

55

5	Арр	lications Under $m_+/m \rightarrow 0$			
	5.1	Some Asymptotic Estimates of $P_x[\sigma_R < \sigma_0]$			
	5.2	Relative Stability of Z and Overshoots			
	5.3	The Two-Sided Exit Problem Under $m_+/m \rightarrow 0$			
	5.4	Spitzer's Condition and the Regular Variation of V_d			
	5.5	Comparison Between σ_R and $\sigma_{[R,\infty)}$ and One-Sided Escape From			
		Zero			
	5.6	Escape Into $(-\infty, -Q] \cup [R, \infty)$			
	5.7	Sojourn Time of a Finite Set for S with Absorbing Barriers 101			
6	The Two-Sided Exit Problem – General Case				
	6.1	Statements of Results			
	6.2	Upper Bounds of $P_x(\Lambda_R)$ and Partial Sums of $g_{\Omega}(x, y)$			
	6.3	Proof of Theorem 6.1.1			
		6.3.1 Case (C2) 113			
		6.3.2 Cases (C3) and (C4) 114			
	6.4	Miscellaneous Lemmas Under (C3), (C4) 117			
	6.5	Some Properties of the Renewal Functions U_a and V_d			
	6.6	Proof of Proposition 6.1.3			
	6.7	Note on the Over- and Undershoot Distributions I			
7	The	Two-Sided Exit Problem for Relatively Stable Walks			
	7.1	Statements of the Main Results 136			
	7.2	Basic Facts from Chapter 6 142			
	7.3	Proof of Theorem 7.1.1 and Relevant Results			
	7.4	Proof of Proposition 7.1.3 (for F Recurrent) and Theorem 7.1.4 148			
		7.4.1 Preliminary Estimates of u_a and the Proof of Proposition			
		7.1.3 in the Case When F is Recurrent			
		7.4.2 Asymptotic Forms of u_a and $P_0(\Lambda_R)$			
		7.4.3 Proof of Theorem 7.1.4 155			
	7.5	Proof of Proposition 7.1.3 (for F Transient) and Theorem 7.1.6 157			
	7.6	Estimation of $P_x \left[S_{N(R)} = y \middle \Lambda_R \right]$ and the Overshoots			
	7.7	Conditions Sufficient for (7.7) or $\ell^*(x)\ell_{\sharp}(x) \sim A(x) \dots \dots 168$			
8	Abs	orption Problems for Asymptotically Stable Random Walks 171			
	8.1	Strong Renewal Theorems for the Ladder Height Processes 172			
	8.2	The Green Function $g_{\Omega}(x, y)$			
	8.3	Asymptotics of $P_x[\sigma_R < T \Lambda_R]$			
	8.4	Asymptotic Form of the Green Function $g_{B(R)}(x, y)$			
	8.5	The Scaling Limit of $g_{B(R)}(x, y)$			
	8.6	Asymptotics of $g_{B(R)}(x, y)$ Near the Boundary			
	8.7	Note on the Over- and Undershoot Distributions II			

9 A	Asyr	nptotically Stable Random Walks Killed Upon Hitting a Finite			
5	Set				
9	9.1	The Potential Function for a Finite Set			
		9.1.1 Recurrent Walks with $\sigma^2 = \infty$			
		9.1.2 Case $\sigma^2 < \infty$			
		9.1.3 Transient Walks			
9	9.2	The r.w. Conditioned to Avoid a Finite Set; Statements of Results 211			
9	9.3	Proof of Theorem 9.2.1			
9	9.4	The Distribution of the Starting Site of a Large Excursion			
9	9.5	An Application to the Escape Probabilities From a Finite Set 227			
9	9.6	Proof of Theorem 9.2.2			
9	9.7	Proof of Theorem 9.2.6			
9	9.8	Random Walks Conditioned to Avoid a Finite Set Forever			
9	9.9	Some Related Results			
		9.9.1 The r.w. Avoiding a Finite Set in the Case $\sigma^2 < \infty$			
		9.9.2 Uniform Estimates of $Q_B^n(x, y)$ in the Case $1 < \alpha < 2242$			
		9.9.3 Asymptotic Properties of $\mathfrak{p}_t^0(\xi,\eta)$ and $\mathfrak{q}_t(\xi)$ and			
		Applications			
		9.9.4 The r.w. Killed Upon Entering the Negative Half-Line 247			
Appe	ndix	249			
A	A.1	Relations Involving Regularly Varying Functions			
		A.1.1 Results on s.v. Functions I			
		A.1.2 Results on s.v. Functions II			
A	A.2	Renewal Processes, Strong Renewal Theorems and the Overshoot			
		Distribution			
		A.2.1 Strong Renewal Theorems			
		A.2.2 Renewal Function and Over- and Undershoot Distributions . 257			
A	1.3	The First Ladder Epoch and Asymptotics of U_a			
		A.3.1 Stability of τ_1 and Spitzer's Condition			
		A.3.2 Asymptotics of U_a Under (AS)			
A	1.4	Positive Relative Stability and Condition (C3)			
A	1.5	Some Elementary Facts			
		A.5.1 An Upper Bound of the Tail of a Trigonometric Integral 266			
		A.5.2 A Bound of an Integral			
		A.5.3 On the Green Function of a Transient Walk			
Refere	ence	es			
Notation Index 272					
Subje	Subject Index				