Contents

1

2

Pre	face	page xiii
No	tation	xvii
Ov	erview of Adversarial Learning	1
1.1	Machine Learning and Its Attack Vectors	2
1.2	Attacker/Defender Goals and Assumptions	2
1.3	Test-Time Evasion Attacks (TTEs) or Adversarial Inputs	4
1.4	Data Poisoning (DP) Attacks	8
1.5	Reverse-Engineering Attacks (REAs) Targeting the Deep Neural	
	Network (DNN)	13
1.6	Attacks on Privacy of Training Data	14
1.7	Chapter Summary	17
1.8	References for Further Reading	18
De	ep Learning Background	19
2.1	Deep Learning for Classification, Regression, or Prediction	20
2.2	Motivating Deep Neural Network (DNN) Classifiers	23
2.3	Linearly Separable Data	23
2.4	From Binary to K-ary Classification	24
2.5	Deep Neural Network (DNN) Architectures	24
2.6	Background on Gradient-Based Optimization	31
2.7	Heuristic Optimization Methods for Deep Learning	36
2.8	Overfitting and DNN Regularization	41
2.9	"Certified" Training and Classification Confidence	44
2.1	0 Neural Network Inversion	46
2.1	1 Identification and Visualization of Salient Features	47
2.1	2 Handling Label-Deficient Data: Transfer and Contrastive Learning	47
2.1	3 Other Methods of Extracting Salient Features	50
2.1	4 Other Types of Classifiers: Naive Bayes (NB) and Logistic Regression	i -
	(LR)	50
2.1	5 Discussion: Statistical Confidence	52
2.1	6 Chapter Summary	53
2.1	7 References for Further Reading	54
2.1	8 Project: Classification of UC Irvine Datasets	54

2.19	Project: Membership-Inference Attack	55
2.20	Project: Classification for the CIFAR-10 Image Domain	55
Basi	ics of Detection and Mixture Models	56
3.1	Mixture Densities	58
3.2	Estimating the Parameters: Maximum Likelihood Estimation (MLE)	
	and Expectation-Maximization (EM)	59
3.3	K-Means Clustering as a Special Case	63
3.4	Model Order Selection	63
3.5	Principal Component Analysis (PCA) and Singular Value	
	Decomposition (SVD)	66
3.6	Some Detection Basics	70
3.7	Performance Measures for Detection	72
3.8	Chapter Summary	72
3.9	References for Further Reading	73
3.10	Projects: Receiver Operating Characteristic (ROC), Principal	
	Component Analysis (PCA), and Gaussian Mixture Model (GMM)	73
Test	Time Evasion Attacks (Adversarial Inputs)	76
4.1	Previously Proposed Test-Time Evasion (TTE) Attacks	76
4.2	"Robust" and "Certified" Defenses for Test-Time Evasion (TTE) Attacks	80
4.3	Anomaly Detection (AD) of Test-Time Evasion (TTE) Attacks	85
4.4	Background on Generative Modeling and Generative Adversarial Networks (GANs)	90
4.5	Generative Adversarial Network (GAN) Based Test-Time Evasion	
	(TTE) Attack Detection Methodology	93
4.6		96
4.7	Deeper Consideration of Test-Time Evasion (TTE) Attack Scenarios	105
4.8	Discussion: Out-of-Distribution Detection (OODD)	110
4.9	Chapter Summary	111
4.10	Project: White Region Counting Defense	112
4.11	Project: Nearest Neighbor (NN) Classification Defense	114
4.12	Project: Test-Time Evasion (TTE) Attacks and Dropout	115
Back	doors and Before/During Training Defenses	116
5.1	Backdoor Attacks	117
5.2	Before/During Training Defender's Goals	120
5.3	Before/During Training Defenses	121
5.4	Training Set Cleansing Reverse-Engineering Defense (TSC-RED)	122
5.5	Experiments	128
5.6	Defense Variations and Additional Experiments	138
5.7	Chapter Summary	139
5.8	Project: Principal Component Analysis (PCA) Based Cluster Impurity (CI) Defense	140
		140

3

4

5

6	Post	-Training Reverse-Engineering Defense (PT-RED) Against	
		Imperceptible Backdoors	141
	6.1	The Post-Training (PT) Scenario	141
	6.2	Some Post-Training (PT) Defenses	143
	6.3	Imperceptible-Backdoor Post-Training Reverse-Engineering Defense	
		(I-PT-RED)	146
	6.4	Experiments	154
	6.5	Lagrangian Post-Training Reverse-Engineering Defense (L-PT-RED)	
		and Experiments	173
	6.6	Discussion: Robust and Explainable AI	178
	6.7	Chapter Summary	179
	6.8	Project: Imperceptible Backdoor Post-Training Reverse-Engineering	
		Defense (I-PT-RED) on Images	180
	6.9	Project: Consensus Post-Training Reverse-Engineering Defense	
	121110	(C-PT-RED)	182
	6.10	Project: Noisy Backdoor Incorporation	184
7	Post	-Training Reverse-Engineering Defense (PT-RED) Against	
		Patch-Incorporated Backdoors	185
	7.1	Perceptible Backdoor Patterns	186
	7.2	Choice of Source Class(es) and Target Class	188
	7.3	Perceptible Backdoor Post-Training Reverse-Engineering Defense	
		(P-PT-RED)	188
	7.4	Experiments	195
	7.5	Chapter Summary	207
	7.6	Project: Exploring What the Deep Neural Network (DNN) is Learning	209
	7.7	Project: Perceptible Backdoor Post-Training Reverse-Engineering	
		Defense (P-PT-RED) and Variations on Images	209
8	Tran	sfer Post-Training Reverse-Engineering Defense (T-PT-RED)	
-	man	Against Backdoors	211
	8.1	Transferability of Sample-wise Minimal Perturbations	211
	8.2	Transfer Post-Training Reverse-Engineering Defense (T-PT-RED)	
	0.2	Detection Procedure	213
	8.3	Experiments	216
	8.4	Chapter Summary	222
	8.5	Project: Targeted Transfer Post-Training Reverse-Engineering Defense	
		(T-PT-RED) for Multiple Classes	223
	8.6	Project: Transfer Post-Training Reverse-Engineering Defense	
		(T-PT-RED) for Backdoor Patches	224
0	Hele	ered Dest Training (DT) Backdoor Defenses	226
9		Versal Post-Training (PT) Backdoor Defenses	220
	9.1	Universal Backdoor Detection (UnivBD) Without Clean Labeled Data Universal Mitigation of Backdoor Attack (UnivBM)	234
	9.2		234
	9.3	Some Additional Experiments	250

ix

	9.4	Chapter Summary	241
	9.5	Project: Universal Backdoor Detection (UnivBD) Versus Lagrangian	
		Post-Training Reverse-Engineering Defense (L-PT-RED)	243
	9.6	Project: Reverse-Engineering Backdoor Patterns (BPs)	243
	9.7	Project: Universal Backdoor Detection (UnivBD) Leveraging Clean	
		Labeled Data	243
	9.8	Project: Universal Detector Based on Deep Neural Network (DNN)	
		Weight Outliers	244
	9.9	Project: Mitigation Using Surrogates for Correct Decision Rate	244
	9.10	Project: Testing the Hypothesis that a Backdoor Preserves Clean Logits	245
	9.11	Project: Modified UnivBM Objective to Reduce Margin	245
	9.12	Project: Defense Against Error-Generic Data Poisoning	245
10	Test	-Time Detection of Backdoor Triggers	246
	10.1	Some Test-Time Backdoor Detection Methods	246
	10.2	In-Flight Reverse-Engineering Defense (IF-RED)	247
	10.3	Experiments	249
	10.4	Chapter Summary	252
	10.5	Project: Trigger Detection via Test-Time Evasion (TTE) Attack	
		Detection Strategy	254
	10.6	Project: In-Flight Reverse-Engineering Defense (IF-RED) Using	
		Imperceptible Backdoor Post-Training Reverse-Engineering Defense	
		(I-PT-RED) Applied to Embedded Features	255
	10.7	Project: Margin as an In-Flight Detection Statistic	255
11	Bacl	kdoors for 3D Point Cloud (PC) Classifiers	256
	11.1	3D Point Cloud (PC) Classification	258
	11.2	Backdoor Attacks against 3D Point Cloud (PC) Classifiers	258
	11.3	A Small Cluster of Backdoor Points	260
	11.4	Attack Experiments	265
	11.5	Point Cloud (PC) Anomaly Detectors (ADs) against Backdoor Attacks	
		(BAs)	271
	11.6	Point Cloud Post-Training Reverse-Engineering Defense (PC-PT-RED)	272
	11.7	Attack/Defense Experiments	276
	11.8	Chapter Summary	278
	11.9	Project: During-Training Defense or Robustification of Point Cloud	
		(PC) Classifiers	280
12	Rob	ust Deep Regression and Active Learning	28 1
	12.1	Background on Active Learning	283
	12.2	Robust Deep Regression by Active Learning (RDR-AL)	284
	12.3	A Localized Region of Regression Error	286
	12.4	Experimental Results for Valuation of a Financial Option	287

	12.5 Discussion Topics: Query by Committee, Reinforcement Learning	
	(RL), Test-Time Evasion (TTE), Classification	290
	12.6 Chapter Summary	292
	12.7 Project: Clean Label Backdoor Attack	292
13	Error Generic Data Poisoning Defense	294
	13.1 Threat Model	295
	13.2 Data Poisoning Defenses	296
	13.3 Bayesian Information Criterion Based Mixture Model Training Set	
	Cleansing (BIC-MM-TSC)	298
	13.4 Experiments on Binary, Discrete Feature Classification Tasks	304
	13.5 Discussion: Experiments with $K > 2$ Classes	312
	13.6 Chapter Summary	312
	13.7 Project: K-Nearest Neighbor (KNN) Defense	313
	13.8 Project: White Box Data Poisoning Attack	314
14	Reverse-Engineering Attacks (REAs) on Classifiers	315
	14.1 Reverse-Engineering Attacks (REAs) Given Domain Samples	316
	14.2 Overview of Defense Against Reverse-Engineering Attacks (REAs)	316
	14.3 Anomaly Detection of Attacks (ADA) Based Defense Against	
	Reverse-Engineering Attacks (REA-ADA)	317
	14.4 Experiments	317
	14.5 Chapter Summary	319
	14.6 Project: Defense Against Random Querying	321
Appendix	Support Vector Machines (SVMs)	322
	References Index	333 351
	IIIUEA	551

xi