CONTENTS

Intro	duction to the series	v
Prefa	ce	ix
List (of tables	xxi
List o	of figures	xxiii
Gloss	sary of symbols	xxvii
Chap	ter 1. Introduction	1
1.1	An historic perspective on the estimation of electric	
	power supply costs	• 2
1.2	Some recent events and their implications for cost	
	information needs in the regulatory process	4
1.3	Plan of the book	7
Chap	ter 2. Optimal resource allocation for electric power	
	supply	9
2.1	Introduction	9
2.2	Some background for optimal resource allocation in	
	electric power supply	9
2.3	Physical environmental quality considerations in electric	
	power pricing	14
	2.3.1 Failure of the market to reflect externalities	14
	2.3.2 Correcting market failure: how much pollution?	16
	2.3.3 The role of electric power regulatory agencies in	
	amending pollution-related market failure	24
2.4	Historical perspective on rate structure theory	26
	2.4.1 Differentiation among classes	27
	2.4.2 Differentiation within classes	. 29
	2.4.3 Differentiation due to decreasing costs over time	30
	2.4.4 Differentiation due to static decreasing average	
	costs	31
2.5	A direct approach to peak load pricing	32
	2.5.1 Some preliminaries	32
	2.5.2 The conventional theory of peak load pricing:	
	peak users bear all capacity charges	33

Contents

	753	Some revisions of the Steiner result	36
	2.5.4	Time-of-day pricing and inter-class discrimination	36
	2.5.5	Why time-of-day pricing allocates resources	
		"efficiently"	37
	2.5.6	Some additional considerations in the theory of	
		peak load pricing	37
2.6	Optim	al departures from marginal cost pricing	38
	2.6.1	The basic inverse-elasticity rule for optimal	
		departures from marginal cost pricing	39
	2.6.2	Optimal departure with "rate of return on	
		investment" profit constraint	42
	2.6.3	Optimal departure with the basic model and	
		demand interdependence	44
	2.6.4	Summary of optimal departure results	45
2.7	Conc	luding remarks on optimal resource allocation for	
	electr	ic power supply	46
Chan	tor 2	Tashaplagy and easts of electric nerves supply	40
Спар	ter J.	recurringly and costs of electric power supply	47
3.1	Conv	entional electric power system technology	49
	3.1.1	Generation	49
	3.1.2	Transmission	51
	3.1.3	Distribution	51
	3.1.4	Time variation of demand	51
	3.1.5	Reserves	52
3.2	The I	irm's costs	53
	3.2.1	Power system cost breakout	54
	3.2.2	Costs and factor adjustment over time: static	
		versus dynamic analytical frameworks	54
	3.2.3	Defining system marginal and average costs	56
	3.2.4	Comparing capital (capacity) and operating cost	
		on an equivalent annual basis	58
	3.2.5	Comparing costs of new and existing equipment:	
1.2		the plant retirement question	60
3.3	Revi	ew of previous cost studies in the electric power	1.1
	indu	stry	63
Chaj	oter 4.	A mathematical programming model for static	
		long-run costs of a thermal-electric power	
		supply system	67
41	Revi	ew of pertinent models of electric	
7.1	cost	s or perturbin models of electric power system	67
	cost		07

xiv

Contents

	4.1.1	Production cost models	68
	4.1.2	Canacity expansion simulation models	69
	4.1.3	Capacity expansion mathematical programming	
		models	70
	4.1.4	Pollution emission constrained models	73
4.2	Gener	al outline of the model	74
4.3	Time	variation of demand	76
4.4	Trans	mission	78
	4.4.1	The continuity constraint	78
	4.4.2	Losses	79
	4.4.3	Bi-directional transmission	80
	4.4.4	Costs	81
4.5	Gener	ation	84
	4.5.1	Factor substitution in electric power generation	84
	4.5.2	New steam turbine-generator plant variables	86
	4.5.3	Gas turbines	87
	4.5.4	Existing plants	88
	4.5.5	Pumped storage	89
4.6	Reser	ves	90
	4.6.1	The basic reserves equations	90
	4.6.2	Reserves needs when other types of plants are	
		included	91
	4.6.3	Reserves to cover losses	92
	4.6.4	Reserves for shared plants	92
4.7	Dual v	variables and the system cost of a marginal unit of	
	demar	nd	92
	4.7.1	On the interpretation of dual variables in mixed-	
		integer mathematical programs	93
	4.7.2	The dual variable for peak period demand	95
4.8	Multi-	season models	96
4.9	Pollut	ion emission constraints and abatement costs	97
4.10	Some	computational notes	99
	4.10.1	Computing optimal solutions	99
	4.10.2	Delineating system cost curves	99
	4.10.3	Accounting cost constraints	100
4.11	Summ	ary of the model	101
Chapter 5.		Application to the New York State Electric	
		and Gas Corporation system	103
5.1	Gener	ation	104
	5.1.1	The system "control area"	104
	5.1.2	Existing plants	105

xv

Contents

	5.1.3 New plants	106
5.2	Transmission	106
	5.2.1 System layout	106
	5.2.2 System density	108
	5.2.3 Power interchanges	108
5.3	Loads	109
	5.3.1 Geographic distribution	109
	5.3.2 Time distribution	109
	5.3.3 Load center load factors	115
5.4	Static expansion of demand	116
5.5	Pollution emissions considered in this study	116
5.6	Defining the nature of the emission standard	116
	5.6.1 Thermal emissions	117
	5.6.2 Air pollution emissions	117
5.7	Abatement cost functions	117
5.8	Selection of emission standards	118
	5.8.1 Set I emission standards	119
	5.8.2 Sets II and III emission standards	119
	5.8.3 Set IV emission standards	122
	5.8.4 Trend in the standards	123
5.9	Emissions not considered in this study	124
	5.9.1 Radio-active wastes	124
	5.9.2 Oxides of nitrogen	125
Chap	ter 6. Cost functions and technical coefficients	127
6.1	New coal-fired steam plants	127
	6.1.1 Capital costs	127
	6.1.2 Operating costs	145
6.2	New nuclear-fueled steam plants	148
	6.2.1 Capital costs	148
	6.2.2 Operating costs	150
6.3	Existing steam plants	153
	6.3.1 Cost considerations	153
	6.3.2 Cost of existing air pollution controls	155
6.4	Gas turbines	156
	6.4.1 Principles	156
	6.4.2 Capital costs	156
	6.4.3 Operating costs	157
6.5	Pumped storage	159
	6.5.1 Principles of operation	159
	6.5.2 Application to the Blenheim-Gilboa nlant	159

xvi

Con	ten	15

xvii

	6.5.3	Capital costs	160
	6.5.4	Operating costs	162
6.6	Air p	ollution abatement technology and costs	162
	6.6.1	Fly-ash abatement	163
	6.6.2	SO ₂ abatement	168
	6.6.3	Cost of meeting fly-ash and SO ₂ standards	172
	6.6.4	Abatement of oxides of nitrogen	179
6.7	Heat	dissipation technology and cost coefficients	181
	6.7.1	"Once-through" rejection of heat	181
	6.7.2	Heat dissipation to the atmosphere	182
	6.7.3	Determination of evaporative cooling tower costs	184
	6.7.4	Thermal effluent diffusion models and diffusion	
		costs	193
6.8	Trans	mission costs	207
6.9	Trans	mission losses	212

Chap	ter 7.	Results	217
7.1	Intro	luction	217
7.2	Syste	m average operating costs, capital costs and total	
	costs	subject to emission standards	219
	7.2.1	System costs with set I emission standards and	
		nuclear-fueled new steam plants	220
	7.2.2	System costs with set I emission standards and	
		coal-fired new steam plants	228
	7.2.3	A note on model bias	233
	7.2.4	System costs with sets II and III emission	
		standards and nuclear-fueled and coal-fired new	
		steam plants	234
	7.2.5	System costs with set IV emission standards	243
	7.2.6	Summary of plot nos. 1-8	251
	7.2.7	Sensitivity of system costs to plant capital costs	253
	7.2.8	Sensitivity of system costs to fuel costs	256
7.3	Time-	and space-specific marginal costs for 62.4%	
	annua	I system Load Factor	258
	7.3.1	Time-specific marginal costs for sets I-IV	
		emission standards when new steam plants are	
		nuclear-fueled	258
	7.3.2	Time-specific marginal costs for sets I-IV	
		emission standards when new steam plants are	
		coal-fired	263

Contents

	7.3.3	Time- and space-specific marginal costs for all	
		load centers	26-
	7.3.4	Time-specific marginal costs for a different load	
		duration	267
	7.3.5	Implications of these results for a time-of-day	
		pricing policy	270
7.4	Effect	of Load Factor on system costs	273
	7.4.1	Changing load uniformity (Load Factor)	274
	7.4.2	Results when Load Factor varies	276
	7.4.3	Relative benefits and costs of time-specific pricing	280
7.5	Some	observations on pumped storage and system costs	287
	7.5.1	Performance of the pumped storage facility	288
	7.5.2	System costs when pumped storage is not	
		available	293
	7.5.3	Effect of Load Factor on pumped storage activity	296
Chant	or 8	Conclusions	207
Chap	er o.	Conclusions	291
8.1	Conc	usions	297
	8.1.1	Economies of scale at the plant level	297
	8.1.2	System average total costs when there are no	
		restrictions on pollution emissions	298
	8.1.3	Effect of emission standards on system average	
		total costs	299
	8.1.4	System marginal costs	300
	8.1.5	Effect of annual Load Factor on system costs:	
		implications for implementing a peak load rate	
		structure	302
	8.1.6	Effect of pumped storage on system costs	302
	8.1.7	Effect of transmission losses on system scale	
		economies	303
8.2	Quali	fications	303
	8.2.1	Static analysis	303
	8.2.2	Seasonal demands	304
	8.2.3	Interconnections and reserves	304
	8.2.4	Distribution	305
	8.2.5	Other pollutants and external effects	305
	8.2.6	Resource depletion	306
8.3	Exte	nsions	306
	8.3.1	Dynamic model	306
	8.3.2	Multi-season model	307
	8.3.3	Multi-sector model	307
	8.3.4	Distribution costs	307

xviii

Contents	xix
Calculation of emissions for plants with no emissions controls	309
emissions	309
dioxide emissions	310
Calculation of the income tax element in	211
annual fixed charge factors	311
Calculations for diffusor pumping costs	313
Calculations for nuclear plant capital costs	317
	319
	333
	Contents Calculation of emissions for plants with no emissions controls emissions dioxide emissions Calculation of the income tax element in annual fixed charge factors Calculations for diffusor pumping costs Calculations for nuclear plant capital costs