CONTENTS
Chapter 1
INTRODUCTION1
1.1 Networks and shortest paths 1
1.2 Algorithms 2
1.3 How to evaluate an algorithm 3
1.4 The organization of the monograph 3
Chapter 2
FINDING THE SHORTEST DISTANCES FROM A FIXED NODE TO ALL OTHER NODES IN N-NODE NON-NEGATIVE DISTANCE NETWORKS 6
2.1 Introduction 6
2.2 Notation 8
2.3 Algorithm 2.3 9
2.4 Justification of Algorithm 2.3 11
2.5. The efficiency of Algorithm 2.3 11
2.6 An empirical stuay on the efficiency of Algorithm 2.3 on a computer 15
2.7 Applications of Algorithm 2.3 16
2.1A Appendix 2.1 A "matrix" algorithm for finding all shortest paths from a fixed node in a non-negative distance network 17
2.2A Appendix 2.2 FORTRAN IV computer programs for Algorithm 2.3 and Dijkstra's algorithm as suggested by Dreyfus 20
Chapter 3
FINDING THE SHORTEST DISTANCES BETWEEN ALL PAIRS OF NODES IN NON-NEGATIVE DISTANCE NETWORKS 23
3.1 Introduction 23
3.2 Algorithm 3.2 24
3.3 Floyd's and Hoffman and Winograd's algorithms 26
3.4 Dantzig's algorithm and its improvement by Tabourier 33
3.5 Algorithm 3.5 37
3.6 Algorithm 3.6 41
3.7 Algorithm 3.7 43
3.1A Appendix 3.1 FORTRAN IV computer programs for Algorithm 3.2 Algorithm 3.3.1 (Floyd), and Algorithm 3.3.2 49
Chapter 4
FINDING ALL SHORTEST DISTANCES FROM A FIXED NODE IN GENERAL NETWORKS 52
4.1 Introduction 52
4.2 Algorithm 4.2 53
4.2.1 Notation 53
4.2.2 Algorithm 4.2 54
4.2.3 Proof of Algorithm 4.2 55
4.2.4 The efficiency of Algorithm 4.2 56
4.2.5 A "matrix" algorithm of Algorithm 4.2 57
4.3 Algorithm 4.3 61
4.3.1 Notation 61
4.3.2 Algorithm 4.3 62
4.3.3 Proof of Algorithrn 4.3 63
4.3.4 A five node example 66
4.3.5 Efficiency of Algorithm 4.3 67
4.3.6 Comparison of Algorithms 68
Chapter 5
FINDING THE SHORTEST DISTANCES BETWEEN ALL PAIRS OF NODES IN GENERAL NETWORKS 72
5.1 Introduction 72
5.2 Algorithm 5.2 73
5.3 Algorithm 5.3 76
5.4 Comparison of the efficiencies of different algorithms for finding all shortest distances in general networks 80

Chapter 6

EFFICIENCIES OF ALGORITHMS FOR DETECTING THE EXISTENCE OF NEGATIVE CYCLES IN GENERAL NETWORKS 82
6.1 Introduction 82
6.2 The computational bounds of different algorithms for detecting the existence of negative cycles in general networks 82
6.3 An empirical study 85
6.4 Conclusions based on the empirical study 88
Chapter 7
FINDING THE SHORTEST DISTANCES BETWEEN ALL PAIRS OF NODES IN NON-CIRCULAR SPARSE NETWORKS BY DECOMPOSITION ALGORITHMS 90
7.1 Introduction 90
7.2 Decomposition algorithms for finding all shortest distances in the first type of linearly overlapping network 92
7.2.1 Algorithm 7.2.1 for finding all key shortest distance submatrices in the first type of linearly overlapping sparse network. 93
7.2.2 Algorithm 7.2.2 for finding all non-key shortest distance submatrices in the first type of linearly overlapping sparse network 97
7.3 Decomposition algorithm for finding all shortest distances in the second type of linearly overlapping sparse network 99
7.3.1 Algorithm 7.3.1 for finding all key shortest distance submatrices in the second type of linearly overlapping sparse network 100
7.3.2 Algorithm 7.3.2 for finding all non-key shortest distance submatrices in the second type of linearly overlapping sparse network 104
7.4 Algorithm 7.4 for finding all shortest distances in star-shaped sparse networks. 106
7.5 Decomposition algorithms for finding all shortest distances in non-circular sparse networks 109
7.5.1 Algorithm 7.5.1 for finding all key shortest distance submatrices in non-circular sparse networks 110
7.5.2 Algorithm 7.5.2 for finding all non-key distance submatrices in non-circular sparse networks. 113
7.5.3 The efficiency of Algorithms 7.5.1 and 7.5.2 114
7.6 Extension 115
Chapter 8
FINDING THE SHORTEST DISTANCES BETWEEN ALL PAIRS OF NODES IN CIRCULAR SPARSE NETWORKS BY DECOMPOSITION ALGORITHMS 117
8.1 Introduction 117
8.2 Decomposition algorithms for finding all shortest distances in donut-shaped sparse networks. 118
8.2.1 Algorithm 8.2.1 (a node-elimination approach) 120
8.2.2 Algorithm 8.2.2 (an arc-elimination approach) 123
8.3 Algorithm 8.3 for finding all shortest distances in a first-degree circular sparse network. 126
8.4 Decomposition algorithm for finding all shortest distances in a wheel-shaped sparse network 127
8.4.1 Algorithm 8.4.1 (a node-elimination approach) 129
8.4.2 Algorithm 8.4.2 (an arc-elimination approach) 131
8.4.3 Algorithm 8.4.3 (an arc-node-elimination approach) 133
8.5 Algorithm 8.5 for finding all shortest distances in second-degree circular sparse networks 135
8.6 Decomposition algorithms for finding all shortest distances in an n-degree circular sparse network 137
Chapter 9
FINDING THE K SHORTEST LOOPLESS PATHS BETWEEN A PAIR OF NODES IN A NETWORK 141
9.1 Algorithm 9.1 for finding the K shortest loopless paths between a pair of nodes in general networks 141
9.2 Algorithm 9.2 for finding the K shortest loopless paths between a pair of nodes in non-negative distance networks 146
BIBLIOGRAPHY 149

