Introduction	XV
Acknowledgments	xvi
Chapter 1	
Today's Computing Environment	1
Complexity, Complexity	1
Multiple Technologies and Protocols	1
Multiple Vendors	2
Varied Users	3
Multiple Locations	3
Rapid Change	4
Greater Business Demands	4
A Daunting Environment To Work In	4
▶ The Total Cost of Ownership Issue	5
Total Cost of Ownership Defined	5
Industry TCO Estimates	7

What TCO Studies Reveal	7
The Underlying Reason for High TCO	9
A Typical Scenario: Choosing Office Systems	10
Availability as the Most Significant Contributor to TCO	11
Summary	12
Chapter 2	
Achieving Higher Availability	13
Determining User Availability Requirements	13
The Service Level Agreement	13
Helping Users Identify Their Availability Requirements	14
Availability Levels and Measurements	16
High Availability Level	16
Continuous Operations Level	17
Continuous Availability	17
Quantifying Availability Targets	17
Availability: A User Metric	19
Measuring End-To-End Availability	22
Summary	23
Chapter 3	
Planning for System Availability	25
Identifying System Components	25
Addressing Critical Components	28
The Four Elements of Availability	28
Summary	29

vi Contents

Chap	ter 4
------	-------

Preparing for Systems Management	31
Processes, Data, Tools, and Organization	31
Systems Management in the PC World (or the Lack of It)	33
IT Organizations: Away from Centralization, Then Back Again	33
Understanding the Systems To Manage	34
The Basics of Management: Five Phases	36
Phase 1: Setting Objectives	36
Phase 2: Planning	37
Phase 3: Execution	37
Phase 4: Measurement	37
Phase 5: Control	38
mplementing Service-Level Management	41
Service-Level Management	41
Process Requirements	41
Data and Measurement Requirements	45
Organization Requirements	46
Tools Requirements	47
Benefits of Service-Level Management	
Problem Management	48
Process Requirements	48 49
Data Barriana	
Data Requirements	49
Organization Requirements	49 49
•	49 49 53

Change Management	58
Process Requirements	59
Data Requirements	62
Organization Requirements	63
Tools Requirements	64
Benefits	64
Security Management	65
Process Requirements	65
Data Requirements	70
Organization Requirements	73
Tools Requirements	75
Benefits	76
Asset and Configuration Management	77
Process Requirements	77
Data Requirements	81
Organization Requirements	83
Tools Requirements	84
Availability Management	85
Process Requirements	86
Data Requirements	88
Organization Requirements	89
Tools Requirements	90
Benefits	91
Chapter 6	
rom Centralized to Distributed	
Computing Environments	93
Systems Management Disciplines	93
The Centralized Computing Environment	94
The Distributed Computing Environment	95

viii Contents

Systems Management in Today's Computing Environment	96
Defining Appropriate Functions and Control	96
Choosing a Deployment Strategy	97
Developing a Deployment Strategy	100
Management by Exception	100
Policy-Based Management	101
Standardization of Performance Data	102
Accountability of the Distributed Systems Manager	102
Central Definition of Systems Management Architectures	102
Process Ownership	103
Summary	103
Chapter 7	
Techniques That Address	
Multiple Availability Requirements	105
▶ Redundancy	105
Hardware Redundancy Examples	106
Software Redundancy Examples	108
Environmental Redundancy Example	109
Critical Success Factors	110
▶ Backup of Critical Resources	110
Methods of Backup	111
Hardware Backup Examples	112
Software Backup Examples	112
IT Operations Backup Examples	114
Critical Success Factors	115
Clustering	117
Comparing Clustering and Redundancy	117
Hardware and Software Clustering Examples	119
IT Operations Clustering Examples	121
Environmental Clustering Examples	121
Critical Success Factors	121

Fault Tolerance	122
Hardware Fault Tolerance Examples	123
Software Fault Tolerance Examples	124
Environmental Fault Tolerance Examples	125
Critical Success Factors	125
Isolation or Partitioning	125
Hardware Isolation Examples	126
Software Isolation Examples	127
Other Benefits of Isolation	128
Critical Success Factors	129
Automated Operations	131
Console and Network Operations Examples	133
Workload Management Examples	134
System Resource Monitoring Examples	134
Problem Management Applications	135
Distribution of Resources Example	135
Backup and Restore Examples	136
Critical Success Factors	136
Access Security Mechanisms	138
Steps to Secure Access	139
Types of Security	141
Password Management	146
Critical Success Factors	148
Standardization	150
Hardware Standardization Examples	151
Software Standardization Examples	152
Network Standardization Examples	153
Processes and Procedures Standardization Examples	153
Naming Standardization Examples	154
Critical Success Factors	155
Transitioning to Standardization	157
Summary	158

X Contents

Chapter 8

Special Techniques for System Reliability	161
The Use of Reliable Components	161
Techniques for Maximizing Hardware Component Reliability	161
Techniques for Maximizing Software Component Reliability	164
Personnel-Related Techniques for Maximizing Reliability	168
Environment-Related Techniques for Maximizing Reliability	169
Some Reliability Indicators for Suppliers	170
Programming to Minimize Failures	171
Correctness	171
Robustness	173
Extensibility	174
Reusability	176
Implement Environmental Independence Measures	177
Use Power Generators	178
Use Independent Air-Conditioning Units	178
Use Fire Protection Systems	178
Use Raised Flooring	179
Install Equipment Wheel Locks	179
Locate Computer Room on the Second Floor	179
Utilize Fault Avoidance Measures	180
Analyzing Problem Trends and Statistics	180
Use of Advanced Hardware Technologies	180
Use of Software Maintenance Tools	181
Summary	181
hapter 9	
pecial Techniques for System Recoverability	183
Automatic Fault Recognition	183
Parity Checking Memory	183

ECC Memory	184
Data Validation Routines	184
Fast Recovery Techniques	185
Minimizing Use of Volatile Storage Media	186
Regular Database Updates to Central Storage	186
Automatic File-Save Features	186
Summary	187
Chapter 10	
Special Techniques for System Serviceability	189
Online System Redefinition	189
Add or Remove I/O Devices	189
Selectively Power Down Subsystems	190
Commit or Reject Changes	190
Informative Error Messages	190
Use Standard Corporate Terminology	191
Adopt Terms Already Used by Common Applications	191
Tell What, Why, Impact, and How	191
Implement Context-Sensitive Help	192
Give Options for Viewing More Detailed Error Information	192
Make Error Information Available After the	
Error Has Been Cleared	193
Complete Documentation	193
Have a Manual of Operations on Hand	193
Write Basic Problem Isolation and Recovery Guides	194
Provide System Configuration Diagrams	194
Label Resources	195
Provide a Complete Technical Library	195
Installation of Latest Fixes and Patches	195
Summary	196

xii

Ch	ap	tei	· 1	1

Special Techniques for System Manageability	197
Use Manageable Components	197
Simple Network Management Protocol (SNMP)	199
Common Management Information Protocol (CMIP)	200
Desktop Management Interface (DMI)	201
Common Information Management Format (CIM)	202
Wired for Management (WfM)	202
Management Applications	203
Systems Management Issues	204
Automated Systems Management Capabilities	205
System Management Applications and Frameworks	206
▶ Educate IS Personnel on Systems Management Disciplines	209
Business Value of the Information System	209
Value of Systems Management Disciplines	209
Principles of Management	209
Basic Numerical Analysis Skills	210
Summary	210
hapter 12	
All Together Now	211
The Value of Systems Management Disciplines	211
Which One First?	212
Analyze Outages	213
▶ Identify Single Points of Failure	214
Exploit What You Have	215
An Implementation Strategy	215
N. Cummary	216

Contents xiii

Appendix A

Availability Features of Selected Products	219
Availability Features of Selected Operating Systems	219
Availability Features of Novell NetWare	220
Availability Features of Sun Solaris 8	224
Availability Features of AIX	228
Availability Features of Microsoft Windows 2000 Server and Professional	231
Availability Features of IBM OS/400	239
Availability Features of Selected Hardware Components	241
Availability Features of IBM S/390 Integrated Server	241
Availability Features of the IBM AS/400 Midrange System	24 3
Availability Features of the IBM RS/6000	248
Availability Features of Compaq Proliant Servers	250
Availability Features of Selected Software Components	25 3
Availability Features of the Oracle 8i Database	253
.	255
ndex	2.55

xiv Contents