CONTENTS

	Preface	ix
1	Sensor and measurement po	ige 1
1.1	What is a sensor?	1
1.2	Fundamental units	7
1.3	Classification of measurement methods	11
	1.3.1 Direct and indirect measurements	11
	1.3.2 Absolute and relative measurements	13
	1.3.3 Deflection and null methods	13
1.4	Multiple regression analysis	15
1.5	Principal component analysis	18
	References	25
2	Chemical senses	26
2.1	Chemoreception	26
2.2	Biological membranes	26
2.3	From reception of taste substances to perception in	
	the brain	29
2.4	From reception of odor substances to perception in	
	the brain	36
	References	38
3	Biomimetic membrane devices	40
3.1	Self-organization appearing far from equilibrium	40
3.2	Phase transition of artificial lipid membranes	42
3.3	Excitability: self-sustained oscillations	47
-	3.3.1 Five types of oscillation in the DOPH-adsorbed	• •
	membrane	47
	3.3.2 Observation of oscillation in a single-hole membrane	50

vi Contents

3.4	I neoretical explanation	32
	3.4.1 Phase transition	53
	3.4.2 Self-sustained oscillation	56
3.5	Effects of anesthetics and taste substances on	
	excitability of the lipid membrane	61
	3.5.1 Effect of anesthetics	61
	3.5.2 Effect of bitter substances	62
	3.5.3 Chaos in excitable lipid membranes	64
3.6	Effect of taste substances on static properties of	
	membranes	66
3.7	Positively charged lipid membrane	72
3.8	Summary	74
	References	74
4	Biosensors	77
4.1	Principle of biosensors	77
4.2	Enzyme sensors	80
4.3	Microbial sensors	85
4.4	Integrated type biosensors	86
	References	90
5	Odor sensors	92
5.1	Types of odor sensor	92
5.2	Odor sensor using a quartz oscillator coated with	
	lipid membranes	95
5.3	Metal oxide gas sensors	100
5.4		102
5.5		104
5.6	Odor sensor using a surface acoustic wave device	106
5.7	Detection of odorants using monolayer membranes	107
	References	111
6	Taste sensors	113
6.1	Measurement of taste	113
6.2	Multichannel taste sensor	115
6.3	Response characteristics	119
	6.3.1 Five basic taste qualities	119
	6.3.2 Pungency and astringency	123
6.4	Taste of amino acids	125

Contents vii

	6.4.1 Classification of taste of amino acids	125
	6.4.2 Measurement of bitter taste and production of	
	mixed taste	129
6.5	Expression of taste by basic taste qualities	134
	6.5.1 Production of the taste of commercial drinks with	
	basic taste substances	134
	6.5.2 Sourness of different chemical substances	136
6.6	F	137
	6.6.1 Responses of the negatively charged membrane to	
	NaCl and quinine	137
	6.6.2 Hybrid membranes composed of two lipid species	144
6.7	Measurement of taste of foods	148
	6.7.1 Beer	149
	6.7.2 Mineral water	151
	6.7.3 Other water	153
	6.7.4 Coffee	153
	6.7.5 Milk	155
	6.7.6 Tomatoes	160
	6.7.7 Rice	164
6.8	Quality control of foods	165
	6.8.1 Sake	165
	6.8.2 Soybean paste	170
6.9	Suppression of bitterness	172
	6.9.1 Suppression of bitterness by sweet substances	172
	6.9.2 Suppression of bitterness by phospholipids	175
6.10	Taste-sensing field effect transistors	177
	References	178
7	Other methods to measure taste	181
7.1	Impedance measurement	181
	7.1.1 Thin lipid/polymer membranes and measuring	
	apparatus	181
	7.1.2 Membrane impedance changes caused by taste	
	substances	182
7.2	Surface plasmon resonance	187
	7.2.1 Principle of SPR measurement with an LB	
	membrane	187
	7.2.2 Changes of resonance angle with taste substances	189
7.3	Surface photo-voltage method	191

v	1	1	1	

Contents

	7.3.1 SPV method with lipid membranes	192
	7.3.2 Responses to five basic tastes	193
	References	194
8	Toward a sensor to reproduce human senses	196
8.1	Discrimination of wine flavor using taste and odor	170
	sensors	196
8.2	Perspective	204
	References	204
		208
	Index	209