CONTENTS

PREFACE xiii

CHAP'	TER 1	CHOOSING A STATISTICAL TEST 1			
1.1		RESEARCH TERMS 2			
1.2	CHOO	CHOOSING A STATISTICAL TEST: SOME GUIDELINES 5			
1.3	SIGNIF	FICANCE OF DIFFERENCES 7			
	1.3.1	The design of the experiment: Independent versus related samples 7			
	1.3.2	Flow-chart for selecting a suitable test for differences between averages 8			
	1.3.3	Two conditions: The t-tests 9			
	1.3.4	Two conditions: Nonparametric tests 10			
1.4	ANAL	YSIS OF VARIANCE DESIGNS 11			
	1.4.1	Between subjects and within subjects factors 11			
	1.4.2	Factorial designs: Between subjects and within subjects designs 13			
	1.4.3	Mixed or split-plot factorial experiments 14			
	1.4.4	Flow-chart for ANOVA 14			
	1.4.5	Analysing the results of one-factor experiments 15			
	1.4.6	Analysing the results of factorial experiments 17			
1.5	MEAS	SURING STRENGTH OF ASSOCIATION BETWEEN VARIABLES 17			
	1.5.1	Flow-chart for selecting a suitable test of association 17			
	1.5.2	Measuring association in nominal data: Contingency tables 18			
	1.5.3	Multiway contingency tables 19			
1.6	PRED	ICTING SCORES OR CATEGORY MEMBERSHIP 19			
	1.6.1	Flow-chart for selecting the appropriate procedure for predicting a score or a			
		category 20			
	1.6.2	Simple regression 20			
	1.6.3	Multiple regression 21			
	1.6.4	Predicting category membership: Discriminant analysis and logistic			
		regression 21			
1.7	ONE-	SAMPLE TESTS 21			
	1.7.1	Flow-chart for selecting the appropriate one-sample test 22			
	1.7.2	Goodness-of-fit: Data in the form of measurements 23			
	1.7.3	Goodness-of-fit: Nominal data 23			
	1.7.4	Inferences about the mean of a single population 23			
	1.7.5	6. 6			

- 1.8 FINDING LATENT VARIABLES: FACTOR ANALYSIS 24
- 1.9 A FINAL COMMENT 25

CHAPTER 2 WINDOWS OPERATIONS FOR SPSS 26

- 2.1 WORKING WITH WINDOWS 27
 - 2.1.1 The Windows NT operating system 27
 - 2.1.2 The screen pointer: Handling the mouse 28
 - 2.1.3 Keeping more than one application open 30
- 2.2 PROPERTIES OF WINDOWS 30
- 2.3 FINDING PROGRAMS AND FILES 33
- 2.4 FILE AND FOLDER OPERATIONS 36
- 2.5 OPENING AND CLOSING SPSS 37
 - 2.5.1 Accessing the Data Editor 38
 - 2.5.2 Closing SPSS and Windows 41
 - 2.5.3 Resuming work on a saved data set 41

Exercise 1 SOME BASIC WINDOWS OPERATIONS 42

CHAPTER 3 DATA HANDLING IN SPSS 44

- 3.1 INTRODUCTION 45
- 3.2 ENTERING DATA 45
 - 3.2.1 Data from a between subjects experiment 45
 - 3.2.2 Rules for naming variables 48
 - 3.2.3 Obtaining the Variable View version of the Data Editor 49
 - 3.2.4 Filling in the Variable View of the Data Editor 49
 - 3.2.5 Filling in the Data View of the Data Editor 57
 - 3.2.6 Data from a within subjects experiment 60
- 3.3 EDITING DATA 62
- 3.4 SAVING AND RETRIEVING SPSS FILES 65
 - 3.4.1 Saving a file *65*
 - 3.4.2 Reading in SPSS files 67
 - 3.4.3 Importing and exporting data 68
- 3.5 LISTING DATA 70
 - 3.5.1 Listing cases 70
 - 3.5.2 Displaying data file information 74
- 3.6 PRINTING IN SPSS 75

Contents

37	COME CDECIAL	OPERATIONS 77
• /	SUME SPECIAL	OPEKA LIONS //

- 3.7.1 Case selection 77
- 3.7.2 The weighting of cases by their frequencies of occurrence 79
- 3.7.3 Splitting files 81
- 3.8 COPYING SPSS DATA OR OUTPUT INTO OTHER APPLICATIONS (e.g. WORD PROCESSORS) 83
 - 3.8.1 Copying data *83*
 - 3.8.2 Copying output 83
- Exercise 2 QUESTIONNAIRE DATA 84

CHAPTER 4 EXPLORATORY DATA ANALYSIS 87

- 4.1 INTRODUCTION 88
 - 4.1.1 Exploratory data analysis (EDA) 88
 - 4.1.2 The influence of outliers and asymmetry of distributions 89
 - 4.1.3 Formal tests, statistical models and their assumptions 90
- 4.2 FINDING MENUS 90
- 4.3 DESCRIBING DATA 93
 - 4.3.1 Describing nominal and ordinal data 93
 - 4.3.2 Describing interval data 98
- 4.4 MANIPULATION OF THE DATA SET 109
 - 4.4.1 Reducing and transforming data 109
 - 4.4.2 The COMPUTE command 110
 - 4.4.3 The RECODE command 113
 - 4.4.4 The Categorize Variables command 116
- Exercise 3 QUESTIONNAIRE DATA (continued) 117

CHAPTER 5 MORE GRAPHS AND CHARTS 120

- 5.1 INTRODUCTION 121
 - 5.1.1 Requesting graphs and charts 121
 - 5.1.2 Seeing the graph or chart on screen 121
- 5.2 EDITING GRAPHS OR CHARTS 122
 - 5.2.1 The Chart Editor 122
- 5.3 ERROR BAR CHARTS 127
- 5.4 PIE CHARTS *131*
- 5.5 LINE GRAPHS 133
- 5.6 SCATTERPLOTS 135
- Exercise 4 EXPLORATORY DATA ANALYSIS (EDA) 137
- Exercise 5 EDA (continued) 140

Exercise 6		MORE CHARTS AND GRAPHS 141		
Exercise 7		RECODING DATA; SELECTING CASES; LINE GRAPH 144		
CHAPTER 6		COMPARING AVERAGES: TWO-SAMPLE AND ONE-SAMPLE TESTS 147		
6.1	INTRO	DDUCTION 148		
	6.1.1	Two-sample and one-sample tests 148		
	6.1.2	Hypotheses and hypothesis testing 148		
	6.1.3	SPSS commands for the two-sample design 149		
	6.1.4	SPSS commands for the one-sample design 150		
6.2	PARA	METRIC METHODS: THE T-TESTS 150		
	6.2.1	Assumptions underlying the use of the t-test 150		
	6.2.2	Paired and independent samples 151		
	6.2.3	The paired samples t-test 152		
	6.2.4	The independent samples t-test 156		
6.3	NONF	PARAMETRIC EQUIVALENTS OF THE T-TESTS 161		
	6.3.1	Related samples: Wilcoxon, Sign and McNemar tests 161		
	6.3.2	Independent samples: Mann-Whitney test 163		
6.4	ONE-	SAMPLE TESTS 165		
	6.4.1	Goodness-of-fit: Data in the form of measurements 165		
	6.4.2	Goodness-of-fit: Nominal data 168		
	6.4.3	Inferences about the mean of a single population 174		
Exercise 8		COMPARING THE AVERAGES OF TWO SAMPLES OF TWO INDEPENDENT SAMPLES OF DATA 178		
Exercise 9		COMPARING THE AVERAGES OF TWO RELATED SAMPLES OF DATA 181		
Exercise 10		ONE-SAMPLE TESTS 184		
СНА	PTER 7	THE ONE-FACTOR BETWEEN SUBJECTS EXPERIMENT 187		
7.1	INTR	ODUCTION 188		
7.2	THE	ONE-WAY ANOVA 189		
	7.2.1	The mnemonics experiment revisited 189		
	7.2.2	Procedure for the one-way ANOVA 191		
	7.2.3	Output for the one-way ANOVA 193		
7.3 NON		PARAMETRIC TESTS 196		
	7.3.1	The Kruskal-Wallis test 196		

7.3.2 Dichotomous data: Chi-square test 198

Exercise 11

ONE-FACTOR BETWEEN SUBJECTS ANOVA 199

CHAPTER 8 FACTORIAL EXPERIMENTS (BETWEEN SUBJECTS) 202

- 8.1 INTRODUCTION 203
- 8.2 FACTORIAL ANOVA WITH SPSS 206
 - 8.2.1 Preparing the data for the factorial ANOVA 207
 - 8.2.2 Exploring the data: Obtaining boxplots 208
 - 8.2.3 Choosing a factorial ANOVA 210
 - 8.2.4 Output for a factorial ANOVA 213
- 8.3 EXPERIMENTS WITH MORE THAN TWO TREATMENT FACTORS 221
- Exercise 12 FACTORIAL BETWEEN SUBJECTS ANOVA (TWO-WAY ANOVA) 224

CHAPTER 9 WITHIN SUBJECTS EXPERIMENTS 227

- 9.1 INTRODUCTION 228
- 9.2 ADVANTAGES AND DISADVANTAGES OF WITHIN SUBJECTS EXPERIMENTS 229
- 9.3 WITHIN SUBJECTS ANOVA WITH SPSS 230
- 9.4 A ONE-FACTOR WITHIN SUBJECTS ANOVA 231
 - 9.4.1 Some experimental results 231
 - 9.4.2 Entering the data 232
 - 9.4.3 Exploring the data: Boxplots for within subjects factors 232
 - 9.4.4 Running the within subjects ANOVA 234
 - 9.4.5 Output for a one-factor within subjects ANOVA 237
 - 9.4.6 Unplanned multiple comparisons: Bonferroni method 240
- 9.5 NONPARAMETRIC TESTS FOR A ONE-FACTOR WITHIN SUBJECTS EXPERIMENT 240
 - 9.5.1 The Friedman test for ordinal data 241
 - 9.5.2 Cochran's Q test for nominal data 242
- 9.6 THE TWO-FACTOR WITHIN SUBJECTS ANOVA 244
 - 9.6.1 Results of a two-factor within subjects experiment 244
 - 9.6.2 Preparing the data set 245
 - 9.6.3 Running the two-factor within subjects analysis 245
 - 9.6.4 Output for a two-factor within subjects ANOVA 248
 - 9.6.5 Unplanned comparisons following a factorial within subjects experiment 251
- Exercise 13 ONE-FACTOR WITHIN SUBJECTS (REPEATED MEASURES) ANOVA 252
- Exercise 14 TWO-FACTOR WITHIN SUBJECTS ANOVA 254

CHAPTER 10 EXPERIMENTS OF MIXED DESIGN 256

- 10.1 INTRODUCTION 257
- 10.2 THE TWO-FACTOR MIXED FACTORIAL ANOVA 258
 - 10.2.1 Results of a mixed $A \times (B)$ experiment 258
 - 10.2.2 Preparing the SPSS data set 258
 - 10.2.3 Exploring the results: Boxplots and tables of means and standard deviations 259
 - 10.2.4 Procedure for a mixed $A \times (B)$ ANOVA 263
 - 10.2.5 Output for the two-factor mixed ANOVA 265
- 10.3 THE THREE-FACTOR MIXED ANOVA 269
 - 10.3.1 The mixed A \times (B \times C) experiment 269
 - 10.3.2 The mixed A \times B \times (C) experiment 270
- 10.4 FURTHER ANALYSIS: SIMPLE EFFECTS AND MULTIPLE COMPARISONS 272
- Exercise 15 MIXED ANOVA (BETWEEN AND WITHIN SUBJECTS FACTORS) 273
- Exercise 16 MIXED ANOVA: THREE-FACTOR EXPERIMENT 275

CHAPTER 11 MEASURING STATISTICAL ASSOCIATION 278

- 11.1 INTRODUCTION 279
- 11.2 CORRELATIONAL ANALYSIS WITH SPSS 281
 - 11.2.1 Procedure for the Pearson correlation 284
 - 11.2.2 Output for the Pearson correlation 285
 - 11.2.3 Point-biserial correlation 286
- 11.3 OTHER MEASURES OF ASSOCIATION 286
 - 11.3.1 Measures of association strength for ordinal data 286
 - 11.3.2 Measures of association strength for categorical data 290
- Exercise 17 THE PEARSON CORRELATION 298
- Exercise 18 OTHER MEASURES OF ASSOCIATION 300
- Exercise 19 THE ANALYSIS OF NOMINAL DATA 303

CHAPTER 12 REGRESSION 306

- 12.1 INTRODUCTION 307
 - 12.1.1 Simple, two-variable regression 307
 - 12.1.2 Multiple regression 307
 - 12.1.3 Residuals 308
 - 12.1.4 The multiple correlation coefficient 308

	~		FORFOGIONI	200
12 2	SIMPL	.E. K	EGRESSION	308

- 12.2.1 Procedure for simple regression 309
- 12.2.2 Output for simple regression 312

12.3 MULTIPLE REGRESSION 317

- 12.3.1 Procedure for simultaneous multiple regression 319
- 12.3.2 Procedure for stepwise multiple regression 322
- 12.3.3 The need for a substantive model of causation 327

12.4 SCATTERPLOTS AND REGRESSION LINES 327

- Exercise 20 SIMPLE, TWO-VARIABLE REGRESSION 331
- Exercise 21 MULTIPLE REGRESSION 333

CHAPTER 13 MULTIWAY FREQUENCY ANALYSIS 335

13.1 INTRODUCTION 336

- 13.1.1 Comparison of loglinear analysis with ANOVA 336
- 13.1.2 Why 'loglinear' analysis? 337
- 13.1.3 Constructing a loglinear model 338
- 13.1.4 Small expected frequencies 338

13.2 AN EXAMPLE OF A LOGLINEAR ANALYSIS 339

- 13.2.1 A three-way contingency table 339
- 13.2.2 Running a loglinear analysis 341
- 13.2.3 Output for a loglinear analysis 344
- 13.2.4 Comparison with the total independence model 349
- Exercise 22 LOGLINEAR ANALYSIS 351

CHAPTER 14 DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION 354

14.1 INTRODUCTION 355

- 14.1.1 Discriminant analysis 355
- 14.1.2 Types of discriminant analysis 356
- 14.1.3 Stepwise discriminant analysis 356
- 14.1.4 Restrictive assumptions of discriminant analysis 357

14.2 DISCRIMINANT ANALYSIS WITH SPSS 357

- 14.2.1 Preparing the data set 358
- 14.2.2 Exploring the data 358
- 14.2.3 Running discriminant analysis 359
- 14.2.4 Output for discriminant analysis 361
- 14.2.5 Predicting group membership 367

Contents

143	LOGISTIC	REGRESSION	368

- 14.3.1 Interpretation of the regression coefficients 370
- 14.3.2 An example with two regressors 370
- 14.3.3 Preparing the data set 370
- 14.3.4 Running logistic regression 371
- 14.3.5 Output for logistic regression 372
- 14.3.6 Different approaches to logistic regression 375

Exercise 23 PREDICTING CATEGORY MEMBERSHIP: DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION 377

CHAPTER 15 FACTOR ANALYSIS 381

- 15.1 INTRODUCTION 382
 - 15.1.1 The nature of factors 382
 - 15.1.2 Stages in a factor analysis 383
 - 15.1.3 The extraction of factors 384
 - 15.1.4 The rationale of rotation 384
 - 15.1.5 Confirmatory factor analysis and structural equation modelling 384
- 15.2 A FACTOR ANALYSIS OF DATA ON SIX VARIABLES 385
 - 15.2.1 Entering the data for a factor analysis 386
 - 15.2.2 The factor analysis command 387
 - 15.2.3 Output for factor analysis 389
- 15.3 USING SPSS COMMAND LANGUAGE 395
 - 15.3.1 The power of SPSS syntax: An example 395
 - 15.3.2 Using a correlation matrix as input for factor analysis 398
 - 15.3.3 Progressing with SPSS syntax 401
- Exercise 24 FACTOR ANALYSIS 402

REVISION EXERCISES 404

REFERENCES 410

INDEX 412