Contents

Preface		1X
Contrib	outing Authors	xi
Part I	Introduction	
1		
Conven	tional Optimization Techniques	3
Mark S	'. Hillier and Frederick S. Hillier	
1	Classifying Optimization Models	4
2	Linear Programming	6
3	Goal Programming	9
4	Integer Programming	10
5	Nonlinear Programming	13
6	Simulation	22
7	Further Reading	25
2		
_	Evolutionary Computation	
Xin Ya		27
1	What Is Evolutionary Computation	27
$\overset{\mathtt{1}}{2}$	A Brief Overview of Evolutionary Computation	35
3	Evolutionary Algorithm and Generate-and-Test Search Algorithm	39
4	Search Operators	40
$\overline{5}$	Summary	46
	V.	
Part II	Single Objective Optimization	
3		
-	onary Algorithms and Constrained Optimization	57
	w Michalewicz and Martin Schmidt	0,
Zorgnie 1	Introduction	57
$\overset{1}{2}$	General considerations	58
$\overset{2}{3}$	Numerical optimization	68
4	Final Remarks	79
-	1 141W4 1 UVAREWARM	, ,

vi	EVOLUTIONARY OPTIMIZATION	
4 Constrain	ned Evolutionary Optimization	87
	Runarsson and Xin Yao	
1	Introduction	87
$\overset{\mathtt{1}}{2}$	The Penalty Function Method	89
$\bar{3}$	Stochastic Ranking	93
4	Global Competitive Ranking	95
5	How Penalty Methods Work	97
6	Experimental Study	100
7	Conclusion	106 109
Apper	ndix: Test Function Suite	109
Part III	Multi-Objective Optimization	
5		117
	nary Multiobjective Optimization	117
$Carlos \ A$. Coello Coello	
1	Introduction	118
2	Definitions	118
3	Historical Roots	119 121
4 5	A Quick Survey of EMOO Approaches Current Research	121 128
5 6	Future Research Paths	134
7	Summary	135
6		
MEA for	Engineering Shape Design	147
Kalyanm	noy Deb and Tushar Goel	
1	Introduction	147
2	Multi-Objective Optimization and Pareto-Optimality	y 149
3	Elitist Non-dominated Sorting GA (NSGA-II)	151
4	Hybrid Approach	155
5	Optimal Shape Design	159
$\frac{6}{2}$	Simulation Results	162
7	Conclusion	172
7 Assessm	ent Methodologies for MEAs	177
	arker and Carlos A. Coello Coello	
1	Introduction	177
$\hat{f 2}$	Assessment Methodologies	178
$\bar{3}$	Discussion	186
4	Comparing Two Algorithms: An Example	188
5	Conclusions and Future Research Paths	191
Part IV	Hybrid Algorithms	
8		- 00
	Genetic Algorithms	199
	A. Joines and Michael G. Kay	
$\frac{1}{2}$	Introduction Hybridizing GAs with Local Improvement Procedure	199

Contents	3	vii
$_{4}^{3}$	Adaptive Memory GA's Summary	$\frac{218}{225}$
9		
-	ng choices of heuristics	229
	Peter Ross and Emma Hart	
1	Introduction	229
2	GAs and parameterised algorithms	232
3	Job Shop Scheduling	235
4	Scheduling chicken catching	241
5 6	Timetabling Discussion and future directions	$\frac{244}{248}$
10		
	r Constrained Optimization	253
	n W. Wah and Yi-Xin Chen	-00
1	Introduction	253
2	Previous Work	257
3	A General Framework to look for SP_{dn}	263
4	Experimental Results	268
5	Conclusions	273
Part V	Parameter Selection in EAs	
11		
Paramet	er Selection	279
	Michalewicz, Ágoston E. Eiben and Robert Hinterding	
20191110a 1	Introduction	279
$\overline{2}$	Parameter tuning vs. parameter control	281
$\bar{3}$	An example	284
4	Classification of Control Techniques	290
5	Various forms of control	294
6	Discussion	297
Part VI	Application of EAs to Practical Problems	
12		
Design o	f Production Facilities	309
~	Smith and Bryan A. Norman	
1	Introduction	309
2	Design for Material Flow When the Number of I/O Points is	
-	Unconstrained	312
3	Design for Material Flow for a Single I/O Point	315
$\frac{4}{5}$	Considering Intradepartmental Flow	318
5	Material Handling System Design	321
6	Concluding Remarks	323
13	D. Lat. J. A. Albartina Mad. Char.	900
	Population and Acceleration Techniques	329
	Vong and An Li	329
1	Introduction	049

2	Concept of Virtual Population	331
3	Solution Acceleration Techniques	332
4	Accelerated GA and Acceleration Schemes	334
5	Validation of Methods	335
6	Further Improvement: Refined Scheme (c)	336
7	The Load Flow Problem in Electrical Power Networks	337
8	Accelerated Constrained Genetic Algorithms for Load Flow	
	Calculation	338
9	Klos-Kerner 11-Node System Studies	339
10	Conclusions	343
Part VII	Application of EAs to Theoretical Problems	
14		
	for the analysis of EAs on pseudo-boolean functions	349
Ingo Weg	gener	
1	Introduction	349
2	Optimization of pseudo-boolean functions	351
3	Performance measures	352
4	Selected functions	353
5	Tail inequalities	355
6	The coupon collector's theorem	357
7	The gambler's ruin problem	358
8	Upper bounds by artificial fitness levels	359
9	Lower bounds by artificial fitness levels	362
10	Potential functions	363
11	Investigations of typical runs	365
15		
	euristic For Finite Horizon POMDPs	371
Alex ZZ	Z. Lin, James C. Bean and Chelsea C. White III	
1	Introduction	371
2	Partially Observed MDP	372
3	Basics of Genetic Algorithms	376
4	Proposed Genetic Algorithm Heuristic	380
5	Heuristic Performance Measures	387
6	Numerical Results	390
7	Summary	391
Appe	ndix	397
16	o 11 m	
	Good k -Tree Subgraphs	399
$Elham\ G$	hashghai and Ronald L. Rardin	
1	Introduction	399
2	k-Trees	400
3	Algorithm Paradigm and Terminology	401
$\frac{4}{2}$	Genetic Algorithm Implementation	403
5	Computational Results	406
6	Concluding Remarks and Further Research	412
Index		415
TILLOW		4416