Contents

Abbreviations Preface		ix
		хi
1.	History	1
2.	Principles	5
	What are X-rays?	5
	Characteristic X-rays	5
	Bremsstrahlung	7
	Ionization cross-section	10
	Fluorescence yield	12
	X-ray absorption	13
	Insulators, conductors and semiconductors	15
3.	The energy-dispersive X-ray detector	19
	Introduction	19
	The semiconductor X-ray detector	19
	Principles of operation	19
	Structure of the detector	20
	Cooling the detector	20
	Detector windows	21
	Collimation of the detector	23
	Protection against spurious electron bombardment	23
	General mechanical details	25
	The X-ray analyser	27
	The FET and detector reset	28
	The pulse processor	28
	Multi-channel analyser	30
	Details of the spectrum	31
	Characteristic peaks	32
	Spurious responses in the system	36
	Detector icing	40

vi Energy-Dispersive X-Ray Analysis in the EM

	New detector technologies	42
	Silicon drift detector	42
	Microcalorimeter	43
4.	Spectral processing	45
	Introduction	45
	Background stripping	45
	Window integrals	45
	Polynomial curve fitting	46
	Top-hat filtering	47
	Background modelling	48
	Deconvolution of overlapping peaks	49
	Statistical considerations	53
	Poisson statistics	53
	Gaussian statistics	54
	The impact of statistics	54
	The effect of the background	55
	Analytical strategy	56
5.	Energy-dispersive X-ray microanalysis in the scanning	59
	electron microscope	
	Introduction	59
	Fundamentals of X-ray analysis in the SEM	63
	Quantitative microanalysis in the SEM	68
	ZAF correction	68
	Standardless ZAF correction	70
	Other correction methods	71
	Semi-quantitative microanalysis in the SEM	72
	Discussion	72
	Fingerprinting	75
	Examples	75
	Conditions for X-ray microanalysis in the SEM	77 78
	EDX analysis in the VP-SEM and ESEM	78 81
	Inhomogeneous samples	83
	Concluding remarks	
6.	X-ray microanalysis in the transmission electron	85
	microscope	
	Introduction	85
	Principles of quantitative analysis in the TEM	86
	Cliff-Lorimer method	86
	Hall method	89
	Absorption, fluorescence and other sources of error	91
	Self-absorption of X-rays in the sample	91
	Fluorescence	94

		Contents	vii
	Excitation by electrons		96
	Excitation by stray X-rays		97
	Precision of quantitative analysis		98
	Spatial resolution		100
	Introduction		100
	Spatial resolution in thin foils		101
	Analysis of particles		104
	Analysis of interfaces		107
	Microscope considerations		109
7.	X-ray mapping		113
	Introduction		113
	Hardware implementation		113
	Statistical considerations		115
	Examples		117
	Spectral overlaps		118
	Other applications		118
	Spectral imaging		120
	Quantitative X-ray mapping		121
	Concluding comments		123
8.	Energy-dispersive X-ray analysis compared with		
	techniques		125
	Introduction		125
	Wavelength-dispersive X-ray analysis – electron probe		
	microanalysis (EPMA)		125
	Spectral resolution		127
	Peak to background		127
	Spectral acquisition		128
	Dead time and counting rate		128
	Geometrical considerations		128
	Electron energy-loss spectroscopy (EELS)		128
	Auger electron spectroscopy (AES)		130
	X-ray photoelectron spectroscopy (XPS)		130
	X-ray fluorescence (XRF)		131
	Atom probe		133
	Overall strengths and weaknesses		133
Bil	bliography		135
Inc	Index		139