Contents

Preface to the second edition pa	ge	ix
Preface to the first edition		хi
1. Introduction		1
1.1. Interaction and behavior sequences		1
1.2. Alternatives to systematic observation		2
1.3. Systematic observation defined		3
1.4. A nonsequential example: Parten's study of children's play		4
1.5. Social process and sequential analysis		6
1.6. Another nonsequential example: Smith's study of parallel play		7
1.7. A sequential example: Bakeman and Brownlee's study of parallel play		8
1.8. Hypothesis-generating research		12
1.9. Summary: Systematic is not always sequential		13
2. Developing a coding scheme		15
2.1. Introduction		15
2.2. What is the question?		16
2.3. Physically versus socially based coding schemes		17
2.4. Detectors versus informants		22
2.5. The fallacy of equating objectivity with physically based schemes		22
2.6. Keeping it simple		23
2.7. Splitting and lumping		24
2.8. Mutually exclusive and exhaustive codes		26

V1	Contents	
2.9.	The evolution of a coding system	27
2.10.	Example 1: Interaction of prehatched chickens	28
2.11.	Example 2: Children's conversations	30
2.12.	Example 3: Baby behavior codes	33
2.13.	Example 4: Children's object struggles	34
2.14.	Example 5: Monkeys' activities	35
2.15.	Summary	36
3. Reco	ording behavioral sequences	38
3.1.	Recording units: Events vs. intervals	38
3.2.	Momentary versus duration events	38
3.3.	Continuous versus intermittent recording	39
3.4.	Coding events	40
3.5.	Recording onset and offset times	43
3.6.	Timing pattern changes	45
3.7.	Coding intervals	46
3.8.	Cross-classifying events	49
3.9.	Nonsequential considerations: Time sampling	50
3.10	. The pleasures of pencil and paper	52
3.11	. Why use electronics?	52
3.12	. Summary	55
4. Asse	essing observer agreement	56
4.1.	Why bother?	56
4.2.	Reliability versus agreement	59
4.3.	The problem with agreement percentages	60
4.4.	The advantages of Cohen's kappa	62
4.5.	Agreement about unitizing	68
4.6.	Agreement about codes: Examples using Cohen's kappa	71
4.7.	Generalizability theory	75
4.8.	Unreliability as a research variable	79
4.9.	Summary	80
5. Rep	resenting observational data	81
5.1.	Representing versus recording	81
5.2	Event seauences	82

Contents	vii
5.3. State sequences	83
5.4. Timed-event sequences	84
5.5. Interval sequences	85
5.6. Cross-classified events	87
5.7. Transforming representations	88
5.8. Summary	90
5. Analyzing sequential data: First steps	91
6.1. Describing versus modeling	91
6.2. Rates and frequencies	92
6.3. Probabilities and percentages	93
6.4. Mean event durations	94
6.5. Transitional probabilities: An introduction	95
6.6. Summary	99
7. Analyzing event sequences	100
7.1. Describing particular sequences: Basic methods	100
7.2. Determining significance of particular chains	101
7.3. Transitional probabilities revisited	103
7.4. Computing z scores and testing significance	108
7.5. Classic lag sequential methods	111
7.6. Log-linear approaches to lag-sequential analysis	116
7.7. Computing Yule's Q or phi and testing for individual	107
differences	127
7.8. Summary	132
8. Issues in sequential analysis	136
8.1. Independence	136
8.2. Stationarity	138
8.3. Describing general orderliness	139
8.4. Individual versus pooled data	141
8.5. How many data points are enough?	144
8.6. The type I error problem	147
8.7. Summary	148

viii Contents	
9. Analyzing time sequences	150
9.1. The tyranny of time	150
9.2. Taking time into account	151
9.3. Micro to macro	153
9.4. Time-series analysis	154
9.5. Autocorrelation and time-series analysis	167
9.6. Summary	175
10. Analyzing cross-classified events	177
10.1. Describing cross-classified events	177
10.2. Log-linear models: A simple example	179
10.3. Summary	182

11.1. Kepler and Brahe	184
11.2. Soskin and John on marital interaction	185
11.3. Marital interaction research since 1963	188
Appendix	
A Pascal program to compute kappa and weighted kappa	194

11. Epilogue

184

References	198
Index	205