Drofoso	ta	the	Firet	Edition	iv
Prerace	Ю	une	FIFSU	Laiuon	1X

Preface to the Second Edition xi

Preface to the Third Edition xiii

PART I THE PHYSIOLOGICAL BASIS OF VISUAL PERCEPTION

Chapter 1: Light and Eyes 3

Light and the information it carries 4
The evolution of light-sensitive structures 8
The adaptive radiation of the
vertebrate eye 14
Conclusions 23

Chapter 2: The Neurophysiology of the Retina 25

The retina of the horseshoe crab 25
The vertebrate retina 28
The retina as a filter 37
Conclusions 41

Chapter 3: Visual Pathways in the Brain 43

The lateral geniculate nucleus 44
The striate cortex 48
Beyond the striate cortex 56
Recent developments 62
Conclusions 66

PART II PROCESSING RETINAL IMAGES

Chapter 4: Approaches to the Psychology of Visual Perception 69 Overview of Marr's theory of vision 73

tents

Chapter 5: Images, Filters, and Features: The Primal Sketch 75

What is an image? 76
The primal sketch 76
Multiple spatial filters 84
Other routes to the primal sketch 87
Energy models for feature detection 93
Anomalous contours, occlusion cues, and end-stopped cells 96
Conclusions 100

Chapter 6: Perceptual Organisation 103

Ambiguous pictures 104
Gestalt laws of organisation 106
Recent approaches to
perceptual organisation 110
Concealment and advertisement 114
Perceptual organisation in
other species 118
Why do the Gestalt laws work? 119
Artificial intelligence approaches
to grouping 120
Energy models for texture segmentation 126
Beyond filters: To contours and surfaces 130
Conclusions 135

Chapter 7: Perceiving Depth 137

Binocular stereopsis 138
Pictorial cues to depth 154
Depth from motion 157
Integrating depth cues 159
Spatial vision during eye movements 162
Conclusions 169

Chapter 8: The Computation of Image Motion 171

First principles: Motion as orientation in space-time 172

Motion detectors 176				
Encoding local velocity 182				
Second-order, non-Fourier, and "long-range"				
motions 187				
The integration of motion measurements 192				
Feature correspondence 196				
Spatial variations in the velocity field 199				
Conclusions 204				
Conclusions 201				
Chapter 9: Object Recognition 205				
Simple mechanisms of recognition 206				
More complex recognition processes 208				
Template matching 208				
Feature analysis 210				
•				
Structural descriptions 212				
Marr and Nishihara's theory of				
object recognition 216				
Beyond generalised cones 222				
Viewpoint-dependent recognition 225				
Discriminating within categories of objects:				
The case of face recognition 227				
Fractals 231				
Conclusions 232				
Chapter 10: Connectionist Models of Visual				
Perception 233				
Satisfying constraints—Marr and Poggio's				
(1976) algorithm 234				
Mapping between coordinate systems 235				
Learning to recognise patterns 241				
Recognising patterns in a PDP network 243				
Connectionist models of				
physiological processes 248				
Conclusions 250				
Conclusions 250				
PART III VISUAL INFORMATION FOR				
THE CONTROL OF ACTION				
Chapter 11: Introduction to the Ecological				
Approach to Visual Perception 255				
J.J. Gibson's theory of perception 256				
3.3. Gloson's theory of perception 250				
Chapter 12: Visual Guidance of Animal				
Locomotion 267				
The visual control of insect flight 267				
Distance and the control of behaviour 274				
Optic flow and time to contact 281				
Conclusions 285				
Conclusions 200				

Chapter 13: Visual	Guidance of
Human Action	287

Postural adjustments 288
Walking, running, and jumping 291
Visual control of speed and direction 296
Intercepting objects 305
Conclusions 310

Chapter 14: Theories of the Control of Action 313

The optomotor response 313
The control of human action 317
Conclusions 320

Chapter 15: Event Perception 323

The perception of relative motion 323
Biological motion 328
The perception of causality 333
Perception and attribution 337
Conclusions 340

Chapter 16: Perception of the Social World 341

Perceiving other animals' behaviour 342
Recognition of individual animals 351
Human face perception 353
Conclusions 364

PART IV CONCLUSIONS

Chapter 17: Contrasting Theories of Visual Perception 367

The nature of the input 368
Direct and indirect theories of perception 368
"Seeing" and "seeing as" 376
Conclusions 378

References 381

Glossary 413

Author index 421

Subject index 429