Contents

PART I PROLOGUE

Ch	apter	1	Introduction	1
1	Smith's	"in	visible hand" in commodity markets	1
2	Spatial	inter	raction in economic theory	2
3	Spatial	inter	raction in geographical analysis	3
4	Regiona	al ma	arket integration and famines	5
5	Organiz	atio	n of commodity markets	7
	5.1	Th	e twentieth century wheat market	7
	5.2	W	hich prices?	7
	5.3	Lo	ng term evolution of ocean freight rates	10
6	Spatial	price	differentials	15
	6.1	Th	ree examples of spatial price differentials	15
	6.2	Ev	olution of spatial price differentials	20
7	The con	cept	of market integration	22
8	Defining	g and	d delimiting the problems to be investigated	25
9	The me	thod	ology of our approach: parsimony as a condition of	
	testabili	ty		27
10	Empiric	al fii	ndings	28
	10.1	Int	erdependence between markets	28
	10.2	Pri	ce intercorrelations	29
			riations in trade with respect to transportation costs	29
	10.4		e evolution of market integration	31
	10.5		e evolution of price volatility	33
11	Outline	of th	ne book	34
Ch	apter	2	Pricing models	37
1	Dynami	c ma	rket models with exogenous price expectations	37

x Contents

	1.1	Cobweb models without inventories	3
		1 Conservative price anticipation	39
		2 Extrapolative price anticipation	4
		3 Adaptative price anticipation	4
		4 The problem of mixed time scales	42
	1.2	Cobweb models with inventories	4.
		1 A linear model	4
		2 An example: the FAO cocoa price model	4:
		3 Comparison with empirical evidence	40
		4 Nonlinear models	49
2	Rationa	l expectations models	50
	2.1	Origins of the concept of rational expectations	50
	2.2	Rational expectations in commodity markets without	
		inventories	54
	2.3	Rational expectation with inventories	57
	2.4	- Francisco Cquatrons	58
3	Oligopo	ly theory and spatial competition	60
	3.1	The monopoly optimum	60
		1 The firm is able to sell all it wishes	60
		2 The firm cannot sell all it wishes	60
	3.2	The duopoly equilibrium	61
		1 Cournot's model	61
		2 Nash equilibrium	62
		3 Spatial competition: two marketplaces	62
		4 Spatial competition: several marketplaces	64
A	Append	ix A: Conditional expectation: a mathematical reminder	66
	A .1	Conditional expectation: two random variables	66
		1 Definitions	66
		2 Basic properties of conditional expectation	67
	A.2	Conditional expectation: generalization to n random variables	68
В	Append	ix B: Consumption, closing stocks and prices of cocoa, sugar	
	and whe	eat	70
A	RT II	Equilibrium models	
Ch	apter	3 The stochastic Enke-Samuelson arbitrage model	73
1	Defining	g the stochastic Enke-Samuelson model	74
	1.1	The spatial price equilibrium model	74
		1 General presentation	74
		2 The spatial price equilibrium model for two markets	75

Contents xi

		3 Algebraic solution	77
		4 Variational solution	78
	1.2	Possible generalizations to more than two markets	79
		1 The algebraic solution	79
		2 The variational solution	79
	1.3	The stochastic Enke-Samuelson model	80
		1 The rationale of a stochastic model	80
		2 Smoothing and linearization of the model	81
		3 Consistency tests of the model	82
		4 Predictions of the model	83
2	The stoo	chastic Enke-Samuelson model for two markets	83
	2.1	Basic equations	86
	2.2	Solutions of the linear model	88
		1 Uncorrelated local shocks (identical means)	88
		2 Correlated local shocks (identical means)	90
		3 Correlated local shocks (different means)	90
		4 Linear versus nonlinear model	92
3	Chain of	f markets	92
	3.1	Chain of markets: direct trade relations restricted to closest	
		neighbours	95
		1 Solving the linear model	96
		2 Proof	97
		3 Price differentials as a function of distance	100
		4 Linear versus nonlinear model	100
	3.2	Chain of markets with an arbitrary exchange pattern	100
		1 Equations and results	101
		2 Roots of reciprocal equation	102
		3 Covariance function	103
		4 Variance	104
		5 Trade	105
		6 Discussion	105
4	Market r	networks	106
	4.1	Solving the linear Enke-Samuelson model	106
		1 Equations of the model	106
		2 Solution by Fourier transformation	107
		3 Integral representation of the covariance function	107
		4 Asymptotic expressions of the price covariance function	109
		5 Approximation formula	109
	4.2	Process of market integration	110
	4.3	Price differentials as a function of inter-market distance	112
٨	A 12	A. Courrience function of a network of markets	113

xii Contents

	A .1	Development for vanishing transportation costs	113
	A.2	Asymptotic expression for large transportation costs	115
	A.3	Approximation formula	116
Ch	apter	4 Empirical evidence about transport costs	119
1	Transno	ortation costs	120
•	1.1	European nineteenth century wheat markets	120
	1.1	1 Inter-regional trade	120
		2 International trade	120
	1.2	Twentieth century commodity markets	123
		1 Inter-regional trade in the United States	123
		2 International trade	125
	1.3	Long term evolution of transportation costs	125
		1 Rail and waterways freight rates	126
		2 Ocean freight rates	127
		3 Tariffs	128
2	The spa	tial patterns of price differentials	129
	2.1	European nineteenth-century wheat markets	129
		1 Comparison between the evolution of price differentials	, Z
		and of transportation costs	129
		2 Methodology for the observation of price differentials	130
		3 Price differentials at the regional level	132
		4 Price differentials at the national level	135
		5 Price differentials at the international level	136
	2.2	Twentieth-century commodity markets	138
		1 Wheat market in the United States	138
		2 Potato market in the United States	138
	2.3	Is the spatial distribution of prices Gaussian?	141
		1 χ^2 test versus cumulant tests	141
_		2 The spatial distribution of prices	142
3	The redu	action in spatial price differentials and its implications	142
	3.1	Evidence of long term price convergence	144
		1 How to measure spatial price dispersion?	144
	2.2	2 Spatial price convergence	145
	3.2	The relationship between price convergence and decrease	
	2.2	in price volatility	146
	3.3	The relationship between price convergence and trade	
		development	147
		1 Trade development at the level of single commodities	147
1	Enti-	2 Trade development at the macroeconomic level	151
4	Esumati	on of the Enke-Samuelson trade model	152

Contents	Xiii

	4.1	Methodology	152
	4.2	Results	152
Α	Append	ix A: Dispersion measures for spatial distributions	154
	A .1	The mean difference	154
		1 Existence	154
		2 Relation with Gini's coefficient	155
		3 Sampling properties	155
	A.2	The range of the sample	155
		1 The limiting distributions	155
		2 Sampling properties	156
В	Append	ix B: Trade and wheat differentials between England and	
	Prussia	1828-1859	157
C	Append	ix C: Conversion tables for volumes, weights and currencies	158
Ch	apter	5 Grain markets and demographic phenomena	159
1	The gre	en-belt model for city-size distributions	159
	1.1	The finite Pareto distribution	162
		1 Cumulated distribution of the finite Pareto distribution	162
		2 Expectation of the finite Pareto distribution	164
		3 Concentration of a finite Pareto distribution	165
	1.2	Evolution of urban systems in the Pareto plane	166
		1 The transportation constraint in the green-belt model	167
		2 Graphical representation in the Pareto plane: possible	
		trajectories	172
	1.3	Confronting the implications of the model with empirical evi-	
		dence	174
		1 Sources	174
		2 Empirical trajectories in the Pareto plane	176
		3 Prices of commodities in small versus large cities	176
	1.4	Conclusion	178
2	The imp	pact of price fluctuations on vital rates	180
	2.1	The methodology	180
		1 Selecting the data	181
		2 Alternative options for estimating the correlation	181
	2.2	Results	182
		1 Nineteenth century	182
		2 Discussion of the period after World War I	188
Α	Append	ix A: Measure of concentration for a finite Pareto distribution	190
	A.1	Expression of Gini's coefficient	190
	A.2	Application to finite Pareto distributions	191

xiv Contents

В	Appendix	B:	First	moments	of a	finite	Pareto	distribution
---	----------	----	-------	---------	------	--------	--------	--------------

193

PART III DYNAMIC MODELS

Cł	apter	6 Interdependence between markets and autoregressive modelling	195
1	Analysi	ng market interdependence	196
	1.1	From price differentials to correlation analysis	196
	1.2	General methods for measuring market interdependence	197
		1 Model-independent measures of market integration	197
		2 Model-dependent measures of market integration	197
	1.3	Simulations of autoregressive modelling	200
		1 Adjusting ARMA processes to a simulated multivariate process	200
		2 Estimation of a multivariate autoregressive process	201
		3 Inadequate sampling time	203
2	Correlat	tion analysis	204
	2.1	Methodology	204
		1 The influence of foreign trade	204
		2 Structural versus temporary interdependence	204
		3 The data	207
	2.2	Local interdependence	207
		1 Regional level	209
		2 National level	210
		3 International level	210
	2.3	Global measure of interdependence: the correlation length	214
		The correlation length	214
		2 The correlation length of precipitation	219
		3 Evolution of the correlation length during the nineteenth	
		century	220
3	Autoreg	ressive modelling: dominant markets and satellite markets	220
	3.1	Multivariate autoregressive models: identification and esti-	
		mation	220
	3.2	Application of multivariate autoregressive models	222
		1 Direction of interaction	222
		2 Satellite markets	225
	Conclus		226
Α	Appendi	x A: Technicalities of correlation analysis	227
	A.1	Prewhitening or not	227

Contents xv

	A.2	Differentiating or not	227
		1 Confidence intervals and tests	229
В	Appendi	ix B: Technicalities of autoregressive modelling	230
	B.1	Definition of the models	230
	B.2	Estimating the model	230
C	Appendi	ix C: Wheat prices in England, Finland, France, Germany and	
	the Unit	red States: 1801-1913	232
Ch	apter	7 Spatial and space-time autoregressive processes	235
1	Spectral	functions and covariance functions of spatial processes	236
	1.1	Spatial versus time dependent autoregressive processes	236
		1 Causality condition	236
		2 Boundary conditions	237
	1.2	Green's functions of recurrence equations	238
		1 Fundamental property	238
		2 Green's functions of first-order equations	238
	1.3	Spectral theory of autoregressive processes	239
		1 The Fourier formalism	239
		2 Applications	241
2	Stationa	rity conditions for spatial processes	245
	2.1	Time dependent processes	245
		1 Recurrence reasoning	245
		2 The Schur theorem	246
	2.2	Spatial processes	249
		1 An illustrative example	249
		2 Stationarity conditions in terms of roots of the characte-	
		ristic equation	254
		3 Stationarity conditions in terms of parameters of the pro-	
		cess: second order processes	256
		4 Stationarity conditions in terms of parameters of the pro-	
		cess: symmetric processes	257
3	Maximu	m likelihood estimation in spatial autoregressive processes	260
	3.1	Time dependent processes	260
	3.2	Spatial processes	262
		1 The nonlinear equations for the estimates	262
		2 Discussion	264
		3 The variance of the disturbances is unknown	265
		4 Simulation	265
4	Space-tin	me autoregressive processes	266
	4.1	Multivariate autoregressive processes	266
		1. The Green's matrix of a system of recurrence equations	267

xvi Contents

		2 Spectral theory: from Green's matrices to covariance	
		functions	268
		3 Stationarity conditions	269
	4.2		269
		1 Definitions	269
		2 Stationarity of diffusion and propagation processes	270
		3 Maximum likelihood parameter estimation for space-tir	ne
		processes	271
Α	Append	ix A: Validity of Fourier expansion for a system of finite size	275
В	Append	ix B: Stability of partial difference equations	276
	B.1	Stability threshold in forward Euler's method	276
	B.2	Stiff systems	277
	B.3	The diffusion equation	277
	B.4	The wave equation: Von Neumann's method and Courant	
		ratio	278
Ch	apter	8 Time dependent Enke-Samuelson trade models	401
_	_		281
1	The equ	ations of the dynamic Enke-Samuelson arbitrage models	282
	1.1	Equations for two markets	284
		1 The nonlinear model	284
		2 The linear model	285
	1.2	Equations for market networks	287
		1 Connection to nearest neighbours	287
_		2 Long range interdependence	289
2.		ry solutions of the Enke-Samuelson model	291
	2.1	Stability in a set of spatially interdependent markets	291
	2.2	Two markets	293
		1 General expressions	294
		2 Variance and coefficient of correlation	296
		3 Behaviour of prices and of trade for large, respectively	
		small transportation costs	296
	2.2	4 Graphical representation	298
	2.3	Three markets	298
		1 General expressions	298
		2 Developments to first and second order	301
	2.4	3 Comment	301
	2.4	Chain of markets	302
		1 Slope of the covariance function in the vicinity of $t = 0$	302
3	Transian	2 Development to first order of the covariance function	304
5	3.1	t behaviour of trade and prices Evolution of trade during the Great Depression	305
	ا ، ا	EVULUIUI OF ITAGE diffing the Great Depression	206

Contents	xvii

		1 Qualitative discussion	306
		2 Evolution of prices and trade expectations	307
		3 The transient stochastic model	310
		4 Statistical evidence	313
		5 Clark's analysis of spatial price dispersion before and	
		after the crash of 1929	313
4	The ergo	odic assumption: ensemble averages versus time averages	315
	4.1	Definitions and criteria of ergodicity	315
	4.2	Ergodicity and non stationarity	317
	4.3	Ergodicity and Mandelbrot's scaling principle	318
Ch	apter	9 Dynamic random field models	323
1	Introduc	tion	324
	1.1	From discrete to continuous space-time equations	324
		1 The continuous Enke-Samuelson model	324
		2 Trade and price differentials	325
		3 Generalizations and comments	326
	1.2	The spectral theory in the continuous case	327
	1.3	A special case	328
		1 The covariance function	328
		2 Qualitative features of the covariance function	330
		3 Covariance function of regional price averages	332
2	Field eq	uations	333
	2.1	Classification of spatial differential equations of the second	
		order	333
	2.2	Source terms and boundary conditions	334
	2.3	Diffusion versus wave equations	335
		1 Linear equations	335
		2 Nonlinear diffusion: the porous media equation	338
3	Correlati	on function of hyperbolic and parabolic random fields	338
	3.1	The passage theorems	340
		1 White noise	340
		2 Comments	342
		3 Spatially autocorrelated noise	342
		4 Numerical computation	343
	3.2	One and two-dimensional hyperbolic fields	344
		1 White noise	344
		2 Spatially autocorrelated noise	347
	3.3	One and two dimensional parabolic fields	349
		1 One spatial dimension	350
		2 Two spatial dimensions	351

xviii Contents

	3.4	Random fields on one and two-dimensional spheres 1 Economic rationale of the introduction of fields on com-	352
		pact manifolds	352
		2 Dynamic random field on the circumference of a circle	352
		3 Dynamic random field on the sphere	355
4	Estimati	ng the random field model	357
	4.1	Selecting appropriate price data	357
	4.2	Identification: qualitative analysis of statistical evidence	357
		1 Modifications of intercorrelation functions with distance	357
		2 Wave models versus diffusion models	359
		3 Specifying the disturbance term	360
	4.3	Estimating a random wave equation	361
		1 Procedure	361
		2 Hypothesis tests of the model	362
		3 Time evolution of estimated parameters	364
		4 Epidemic velocities	366
Α	Appendi	x A: Expression of $c(x,0)$ for a wave equation	369
В	Appendi	x B: Existence, continuity and differentiability of the Fourier	
	integral		372
	B.1	Continuity	372
	B.2	Continuity and differentiability in $\mathbb{R}^{n+1} - (0,0)$	372
C	Appendi	x C: Green's functions of wave equations on one and two di-	
	mensiona	al spheres	374
	C.1	Green's function on S ₁	374
	C.2	Green's function on S ₂	375
D	Appendi	x D: Checking the correlation function as a solution of the field	
	equation		378
PA:	RT IV	EPILOGUE	
Ch	apter 10	0 Conclusion and perspectives	379
1	"A study	in analytical economics"	379
	1.1	The two purposes of economics	379
	1.2	"Collectors of facts"	382
2	Perspecti	ves	383
	2.1	Tests of quantitative models	383
	2.2	Construction of qualitative models	383
Ref	erences		385
Index			
	-/-		403