Brief Contents

DADTI	INTRODUCTION 1				
7 A K T T					
_	The Green of Gens and Gen Research 5				
2	The Composition of Cells 43				
3	Cell Metabolism 73				
4	Fundamentals of Molecular Biology 103				
PART II	THE FLOW OF GENETIC INFORMATION 153				
5	The Organization and Sequences of Cellular Genomes 155				
6	Replication, Maintenance, and Rearrangements of Genomic DNA 201				
7					
8	233				
_					
PART III CELL STRUCTURE AND FUNCTION 353					
9	The Nucleus 355				
10	Protein Sorting and Transport: The Endoplasmic Reticulum, Golgi Apparatus and Lysosomes 385				
11	Bioenergetics and Metabolism: Mitochondria, Chloroplasts, and Peroxisomes 433				
12	The Cytoskeleton and Cell Movement 473				
	The Plasma Membrane 529				
14	Cell Walls, the Extracellular Matrix, and Cell Interactions 569				
PART IV	CELL REGULATION 597				
	Cell Signaling 599				
16	The Cell Cycle 649				
- •	con cycle 043				

17 Cell Death and Cell Renewal 689

18 Cancer 719

Contents

Preface xiv

Organization and Features of The Cell Media and Supplements to Accompan

PART Introdu

1

An Overview of Cells and Cell Research 3

The Origin and Evolution of Cells 4

The First Cell 4

The Evolution of Metabolism 7

Present-Day Prokaryotes 8 Eukaryotic Cells 9

The Origin of Eukaryotes 10 The Development of Multicellular

Organisms 12

Cells as Experimental Models 16 *E. coli* 16

Yeasts 17

Caenorhabditis elegans 17 Drosophila melanogaster 18

Arabidopsis thaliana 19

Vertebrates 19

Tools of Cell Biology 21 Light Microscopy 21

Electron Microscopy 27

Subcellular Fractionation 30

Growth of Animal Cells in Culture 33

Culture of Plant Cells 36

xvi y The Cell xviii

ction

Vi	ruses 36	
	KEY EXPERIMENT	Animal Cell
	Culture 35	

■ MOLECULAR MEDICINE Viruses and Cancer 37

Summary and Key Terms 39 Questions 41 References and Further Reading 41

The Composition

of Cells 43 The Molecules of Cells 43 Carbohydrates 44 Lipids 46

Nucleic Acids 50

Proteins 52 **Cell Membranes 58** Membrane Lipids 60

Membrane Proteins 61 Transport across Cell Membranes 63

Proteomics: Large-Scale Analysis of Cell Proteins 65

Identification of Cell Proteins 65

Global Analysis of Protein Localization 6
Protein Interactions 69
■ KEY EXPERIMENT The Folding of Polypeptide Chains 54

■ KEY EXPERIMENT The Structure of Cell Membranes 59

Summary and Key Terms 70 Questions 71 References and Further Reading 71

3

Cell Metabolism 73
The Central Role of Enzymes as

The Catalytic Activity of Enzymes 73 Mechanisms of Enzymatic Catalysis 74 Coenzymes 78

Biological Catalysts 73

Regulation of Enzyme Activity 79 **Metabolic Energy 81**Free Energy and ATP 81

The Generation of ATP from Glucose 84
The Derivation of Energy from Other
Organic Molecules 89
Photosynthesis 90

viii CONTENTS

The Biosynthesis of Cell Constituents 91

Carbohydrates 92 Lipids 93

Proteins 94 Nucleic Acids 97

- KEY EXPERIMENT Antimetabolites and Chemotherapy 98
- MOLECULAR MEDICINE
 Phenylketonuria 96

Summary and Key Terms 100 Questions 101 References and Further Reading 101

4

Fundamentals of Molecular Biology 103

Heredity, Genes, and DNA 103 Genes and Chromosomes 104

The I

5

The Organization and Sequences of Cellular Genomes 155

The Complexity of Eukaryotic Genomes 155 Introns and Exons 157

Repetitive DNA Sequences 161
Gene Duplication and Pseudogenes 164
The Composition of Higher Eukaryotic
Genomes 165

Genes and Enzymes 107 Identification of DNA as the Genetic Material 107

The Structure of DNA 108

Replication of DNA 110 **Expression of Genetic**

Information 111

Colinearity of Genes and Proteins 111 The Role of Messenger RNA 112 The Genetic Code 113 RNA Viruses and Reverse Transcription

115

Recombinant DNA 118 Restriction Endonucleases 118 Generation of Recombinant DNA

Molecules 121 Vectors for Recombinant DNA 122 DNA Sequencing 125

Expression of Cloned Genes 126 **Detection of Nucleic Acids and** Proteins 129

Amplification of DNA by the Polymerase Chain Reaction 129

Flow of Genetic II

Chromosomes and Chromatin 166 Chromatin 166 Centromeres 171

Telomeres 175 The Sequences of Complete Genomes 176

Prokaryotic Genomes 177 The Yeast Genome 178 The Genomes of Caenorhabditis elegans and Drosophila melanogaster 180

Plant Genomes 183 The Human Genome 185

The Genomes of Other Vertebrates 190

Nucleic Acid Hybridization 131 Antibodies as Probes for Proteins 134

Gene Function in Eukaryotes 137

Genetic Analysis in Yeasts 137

Gene Transfer in Plants and Animals 139

Mutagenesis of Cloned DNAs 142 Introducing Mutations into Cellular Genes 142

Interfering with Cellular Gene Expression 145

- **KEY EXPERIMENT** The DNA Provirus Hypothesis 116
- MOLECULAR MEDICINE HIV and AIDS 120

Summary and Key Terms 147 Ouestions 149 References and Further Reading 150

nformation

Bioinformatics and Systems Biology 192

Systematic Screens of Gene Function 193

Regulation of Gene Expression 194

Variation among Individuals and

Genomic Medicine 195

- **KEY EXPERIMENT** The Discovery of Introns 158
- **KEY EXPERIMENT** The Human Genome 188

Summary and Key Terms 196

Ouestions 198

References and Further Reading 199

6

Replication, Maintenance, and Rearrangements of Genomic DNA 201

DNA Replication 202

DNA Polymerases 202

The Replication Fork 202

The Fidelity of Replication 209

Origins and the Initiation of Replication 211

Telomeres and Telomerase: Maintaining the Ends of Chromosomes 214

DNA Repair 216

Direct Reversal of DNA Damage 216

Excision Repair 219

Translesion DNA Synthesis 223

Recombinational Repair 225

Recombination between Homologous DNA Sequences 227

Models of Homologous Recombination 228

Enzymes Involved in Homologous Recombination 229

DNA Rearrangements 233

Site-Specific Recombination 233

Transposition via DNA Intermediates 239

Transposition via RNA Intermediates 242

Gene Amplification 247

- KEY EXPERIMENT Rearrangement of Immunoglobulin Genes 240
- MOLECULAR MEDICINE Colon Cancer and DNA Repair 224

Summary and Key Terms 249
Questions 250

References and Further Reading 251

7

RNA Synthesis and Processing 253

Transcription in Prokaryotes 254

RNA Polymerase and Transcription 254 Repressors and Negative Control of

Positive Control of Transcription 261

Transcription 258

Eukaryotic RNA Polymerases and

General Transcription Factors 262

Eukaryotic RNA Polymerases 262 General Transcription Factors and

Initiation of Transcription by RNA

Polymerase II 262 Transcription by RNA Polymerases I

and III 266

Regulation of Transcription in

Eukaryotes 268cis-Acting Regulatory Sequences

cis-Acting Regulatory Sequences: Promoters and Enhancers 269

Promoters and Enhancers 269 Transcription Factor Binding Sites 272

Transcriptional Regulatory Proteins 273 Structure and Function of Transcriptional Activators 277

Eukaryotic Repressors 280 Relationship of Chromatin Structure to

Transcription 281
Regulation of Transcription by
Noncoding RNAs 285

DNA Methylation 286

RNA Processing and Turnover 287
Processing of Ribosomal and Transfer
RNAs 287

Processing of mRNA in Eukaryotes 290

Splicing Mechanisms 292 Alternative Splicing 299

RNA Editing 300 RNA Degradation 301

■ KEY EXPERIMENT Isolation of a Eukaryotic Transcription Factor 276 ■ KEY EXPERIMENT The Discovery of snRNPs 294

Summary and Key Terms 303
Questions 306
References and Further Reading 306

8

Protein Synthesis, Processing, and Regulation 309

Translation of mRNA 309

Transfer RNAs 310

The Ribosome 311

The Organization of mRNAs and the Initiation of Translation 317

The Process of Translation 319

Regulation of Translation 325

Protein Folding and Processing 329

Chaperones and Protein Folding 330 Enzymes that Catalyze Protein Folding 332

Protein Cleavage 333 Glycosylation 335

Attachment of Lipids 337

Regulation of Protein Function 339

Regulation by Small Molecules 340 Protein Phosphorylation 341 Protein-Protein Interactions 344

Protein Degradation 344

The Ubiquitin-Proteasome Pathway 344 Lysosomal Proteolysis 347

- KEY EXPERIMENT Catalytic Role of Ribosomal RNA 316
- MOLECULAR MEDICINE Antibiotic Resistance and the Ribosome 320

Summary and Key Terms 348

Questions 350

References and Further Reading 350

PART Ce

9

The Nucleus 355

The Nuclear Envelope and Traffic between the Nucleus and the Cytoplasm 355

Structure of the Nuclear Envelope 356 The Nuclear Pore Complex 361 Selective Transport of Proteins to and

from the Nucleus 362
Regulation of Nuclear Protein

Transport of RNAs 369

Import 368

Internal Organization of the Nucleus 371

Chromosomes and Higher-Order Chromatin Structure 371 Sub-Compartments within the

Nucleus 374 The Nucleolus and rRNA

Processing 375
Ribosomal RNA Genes and the

Transcription and Processing of rRNA 377
Ribosome Assembly 379

Organization of the Nucleolus 376

■ KEY EXPERIMENT Nuclear Lamina Diseases 359

■ MOLECULAR MEDICINE Identification of Nuclear Localization Signals 364

Summary and Key Terms 380
Questions 382

References and Further Reading 382

ll Structure and F

10

Protein Sorting and Transport: The Endoplasmic Reticulum, Golgi Apparatus, and Lysosomes 385

The Endoplasmic Reticulum 386The Endoplasmic Reticulum and Protein

Secretion 386
Targeting Proteins to the Endoplasmic Reticulum 387

Insertion of Proteins into the ER
Membrane 393
Protein Folding and Processing

in the ER 398

Quality Control in the ER 400

The Smooth ER and Lipid Synthesis 403

Export of Proteins and Lipids from the ER 406

The Golgi Apparatus 408Organization of the Golgi 409
Protein Glycosylation within the Golgi 410

Lipid and Polysaccharide Metabolism in the Golgi 413 Protein Sorting and Export from the Golgi Apparatus 414

The Mechanism of Vesicular
Transport 417
Experimental Approaches to Under-

standing Vesicular Transport 417
Cargo Selection, Coat Proteins, and
Vesicle Budding 419
Vesicle Fusion 420

Lysosomes 424
Lysosomal Acid Hydrolases 424
Endometric IV

Endocytosis and Lysosome Formation 424

unction

Phagocytosis and Aut	topha	gy	428
KEV EVDEDIMENT	The	c:-	1

- The Signal Hypothesis 390
- MOLECULAR MEDICINE Gaucher Disease 426

Summary and Key Terms 431 Questions 431

References and Further Reading 431

11

Bioenergetics and Metabolism:

Mitochondria, Chloroplasts, and Peroxisomes 433

Mitochondria 434

Organization and Function of Mitochondria 434 The Genetic System of Mitochondria 435

Protein Import and Mitochondrial Assembly 437

The Mechanism of Oxidative Phosphorylation 443

The Electron Transport Chain 444

Chemiosmotic Coupling 445 Transport of Metabolites across the Inner

Membrane 450

Chloroplasts and Other Plastids 451 The Structure and Function of

Chloroplasts 451

The Chloroplast Genome 452 Import and Sorting of Chloroplast

Proteins 454 Other Plastids 456

Photosynthesis 458

Electron Flow through Photosystems I and II 459

Cyclic Electron Flow 461

ATP	Synt	hesis	462
Δ II	JVIII	116919	704

Peroxisomes 462

Functions of Peroxisomes 463

Peroxisome Assembly 465

■ KEY EXPERIMENT The

Chemiosmotic Theory 448

■ MOLECULAR MEDICINE Diseases of Mitochondria: Leber's Hereditary

Summary and Key Terms 467

Ouestions 469

References and Further Reading 470

Optic Neuropathy 438

12

The Cytoskeleton and Cell Movement 473

Structure and Organization of Actin Filaments 473

Assembly and Disassembly of Actin Filaments 474 Organization of Actin Filaments 480

Association of Actin Filaments with the Plasma Membrane 482

Protrusions of the Cell Surface 485

Actin, Myosin, and Cell Movement 486

Muscle Contraction 487 Contractile Assemblies of Actin and

Myosin in Nonmuscle Cells 491 Nonmuscle Myosins 493

Formation of Protrusions and Cell Movement 495

Intermediate Filaments 497 Intermediate Filament Proteins 497

Assembly of Intermediate Filaments 498

Intracellular Organization of Intermediate Filaments 499

Functions of Keratins and

Neurofilaments: Diseases of the Skin and Nervous System 502

Microtubules 505

Structure and Dynamic Organization of Microtubules 505

Assembly of Microtubules 507

Organization of Microtubules within Cells 510

Microtubule Motors and Movement 511

Identification of Microtubule Motor Proteins 511

Cargo Transport and Intracellular Organization 514

Cilia and Flagella 517 Reorganization of Microtubules during

Chromosome Movement 521

Mitosis 520

■ KEY EXPERIMENT Expression of Mutant Keratin Causes Abnormal Skin Development 502

■ KEY EXPERIMENT The Isolation of Kinesin 514

Summary and Key Terms 523 Questions 526

References and Further Reading 526

13

The Plasma Membrane 529

Structure of the Plasma

Membrane 529 The Phospholipid Bilayer 530

Membrane Proteins 532

Mobility of Membrane Proteins 537

The Glycocalyx 540

Transport of Small Molecules 540

Passive Diffusion 541

Facilitated Diffusion and Carrier Proteins 542

Ion Channels 543

Active Transport Driven by ATP Hydrolysis 550

Active Transport Driven by Ion Gradients 555

Endocytosis 556

Phagocytosis 557

Receptor-Mediated Endocytosis 558

Protein Trafficking in Endocytosis 563

- KEY EXPERIMENT The LDL Receptor 559
- MOLECULAR MEDICINE Cystic Fibrosis 554

Summary and Key Terms 566
Questions 567
References and Further Reading 567

14

Cell Walls, the Extracellular Matrix, and Cell Interactions 569

Cell Walls 569

Bacterial Cell Walls 570 Eukaryotic Cell Walls 570

The Extracellular Matrix and Cell-Matrix Interactions 575

Matrix Structural Proteins 575 Matrix Polysaccharides 578 Matrix Adhesion Proteins 579 Cell-Matrix Interactions 580

Cell-Cell Interactions 584

Adhesion Junctions 584
Tight Junctions 588
Gap Junctions 589
Plasmodesmata 592

- KEY EXPERIMENT The Characterization of Integrin 582
- MOLECULAR MEDICINE Gap Junction Diseases 591

Summary and Key Terms 593

Questions 594

References and Further Reading 595

PART Cel

15

Cell Signaling 599

Signaling Molecules and Their Receptors 600

Modes of Cell-Cell Signaling 600 Steroid Hormones and the Nuclear

Receptor Superfamily 601 Nitric Oxide and Carbon Monoxide 603

Neurotransmitters 604

Peptide Hormones and Growth Factors 605

Eicosanoids 607

Plant Hormones 608

Functions of Cell Surface Receptors 609

G Protein-Coupled Receptors 610

Receptor Protein-Tyrosine Kinases 612 Cytokine Receptors and Nonreceptor

Protein-Tyrosine Kinases 616
Recentors Linked to Other Frances 1

Receptors Linked to Other Enzymatic Activities 616

Pathways of Intracellular Signal Transduction 617

The cAMP Pathway: Second Messengers and Protein Phosphorylation 618

Cyclic GMP 620

Phospholipids and Ca²⁺ 621

The PI 3-Kinase/Akt and mTOR Pathways 624

MAP Kinase Pathways 627

The JAK/STAT and TGF-β/Smad Pathways 633

NF-xB Signaling 634

The Hedgehog, Wnt, and Notch Pathways 634

Signal Transduction and the Cytoskeleton 637

Integrins and Signal Transduction 637

l Regulation

Regulation of the Actin Cytoskeleton 638 Signaling Networks 640

Feedback and Crosstalk 640

Networks of Cellular Signal

Transduction 641 ■ KEY EXPERIMENT The Src Protein-Tyrosine Kinase 612

■ MOLECULAR MEDICINE Cancer: Signal Transduction and the ras Oncogenes 629

Summary and Key Terms 643 Questions 646

References and Further Reading 646

16

The Cell Cycle 649

The Eukaryotic Cell Cycle 650

Phases of the Cell Cycle 650

Regulation of the Cell Cycle by Cell

Growth and Extracellular Signals 652

Cell Cycle Checkpoints 654

Restricting DNA Replication to Once per

Regulators of Cell Cycle Progression 657

Cell Cycle 656

Protein Kinases and Cell Cycle Regulation 657

Families of Cyclins and Cyclin-

Dependent Kinases 661 Growth Factors and the Regulation of G_1

Cdk's 665 DNA Damage Checkpoints 667

The Events of M Phase 669

Stages of Mitosis 669

Cdk1/Cyclin B and Progression to

Metaphase 672 The Spindle Assembly Checkpoint and

Progression to Anaphase 675 Cytokinesis 677

Meiosis and Fertilization 678

The Process of Meiosis 678

Regulation of Oocyte Meiosis 681 Fertilization 684

■ KEY EXPERIMENT The Discovery of MPF 658

■ KEY EXPERIMENT The Identification of Cyclin 662

Summary and Key Terms 685

17

Questions 687

Cell Death and Cell Renewal 689

References and Further Reading 687

Programmed Cell Death 690

The Events of Apoptosis 690

Caspases: The Executioners of

Apoptosis 692 Central Regulators of Apoptosis:

The Bcl-2 Family 695 Signaling Pathways that Regulate Apoptosis 698

Stem Cells and the Maintenance of Adult Tissues 700 Proliferation of Differentiated Cells 700

Stem Cells 703

Medical Applications of Adult Stem

Cells 708

Cells 708

Embryonic Stem Cells and
Therapeutic Cloning 709

Somatic Cell Nuclear Transfer 713

KEY EXPERIMENT Identification of Genes Required for Programmed Cell Death 694

Embryonic Stem Cells 710

■ KEY EXPERIMENT Culture of Embryonic Stem Cells 710

Summary and Key Terms 716 Questions 717 References and Further Reading 717

18 Cancer 719

The Development and Causes of Cancer 719

Types of Cancer 720
The Development of Cancer 721
Causes of Cancer 723
Properties of Cancer Cells 724
Transformation of Cells in Culture 728

Tumor Viruses 729

Hepatitis B and C Viruses 729 SV40 and Polyomavirus 730

D : 11 : F21

Papillomaviruses 731

Adenoviruses 731

Herpesviruses 732 Retroviruses 732

Oncogenes 733

Retroviral Oncogenes 734 Proto-Oncogenes 735

Proto-Oncogenes 735

Oncogenes in Human Cancer 738

Functions of Oncogene Products 741 **Tumor Suppressor Genes 746**Identification of Tumor Suppressor

Genes 746
Functions of Tumor Suppressor Gene

Products 750

Roles of Oncogenes and Tumor
Suppressor Genes in Tumor
Development 753

Molecular Approaches to Cancer Treatment 755

Prevention and Early Detection 755 Molecular Diagnosis 756 Treatment 756

- **KEY EXPERIMENT** The Discovery of Proto-Oncogenes 737
- **MOLECULAR MEDICINE** STI-571: Cancer Treatment Targeted against the bcr/abl Oncogene 759

Summary and Key Terms 761 Questions 763 References and Further Reading 763

Answers to Questions 767 Glossary 779 Index 799