Contents

Chapter I: Problems for investigation	1
Introduction	1
Part I: Problems	5
Section 1: Iterating	5
Section 2: Search for patterns	11
Section 3: Exceptions and special cases	17
Section 4: Generalizing given problems	19
Section 5: Converse problems	23
Part II: Solutions	27
Section 1: Iterating	27
Section 2: Search for patterns	37
Section 3: Exceptions and special cases	55
Section 4: Generalizing given problems	66
Section 5: Converse problems	77
Chapter II: Approaches to problem solving	89
Introduction	89
Part I: Problems	95
Section 1: Expressing the problem in a different language	95
Section 2: Extending the field of investigation	96
Section 3: The use of invariants of transformations	97
Section 4: The use of extremal elements	97
Section 5: The method of infinite descent	98
Section 6: Mathematical induction	98
Section 7: Proof by contradiction	99
Section 8: Employing physics	99
Part II: Solutions	99
Section 1: Expressing the problem in a different language	99
Section 2: Extending the field of investigation	110
Section 3: The use of invariants of transformations	115
Section 4: The use of extremal elements	117
Section 5: The method of infinite descent	118
Section 6: Mathematical induction	121
Section 7: Proof by contradiction	125
Section 8: Employing physics	125

xii Contents

Chapter III: Problems based on famous topics in the history of	
mathematics	133
Introduction	133
Part I: Problems	133
Section 1: Problems on prime numbers	133
1.1 Prime numbers in arithmetic progressions	133
1.2 Wilson's theorem and results of Lagrange and Leibniz on prime	
numbers	134
1.3 Polynomials with prime number values	135
Section 2: The number π	137
2.1 Archimedes' algorithm for calculating π	137
2.2 God's delight in odd numbers: The Leibniz series for π , deduced	120
from Gregory's arc tangent series	138
2.3 π and probability: Buffon's needle problem	139 140
Section 3: Applications of complex numbers and quaternions	140
3.1 Gauss' fundamental theorem of axonometry3.2 Lagrange's identity on products of sums of four squares treated by	140
quaternions	142
Section 4: On Euclidean and non-Euclidean geometrices	145
4.1 Euclidean geometry	145
4.2 Projective planes	146
Section 5: The art of counting. Results of Catalan, Euler and André	149
5.1 In how many ways can a product of n factors be calculated by	
pairs?	149
5.2 Euler's problem on polygon division	150
5.3 The number of 'zigzag' permutations of the set $\{1,2,3,\ldots,n\}$	
leading to the secant and tangent series	151
Part II: Solutions	153
Section 1: Problems on prime numbers	153
Section 2: The number π	160
Section 3: Applications of complex numbers and quaternions	166
Section 4: On Euclidean and non-Euclidean geometries	168
Section 5: The art of counting; results of Catalan, Euler and Gregory	172
Chapter IV: A selection of elementary problems treated by eminent	
twentieth-century mathematicians	180
Introduction	180
Part I: Problems	180
Section 1: The problems of Sylvester-Gallai and related questions in	
Euclidean geometry and in combinatorics	180
1.1 The problem of Sylvester-Gallai	181
1.2 Two generalizations of Sylvester-Gallai's problem in Euclidean geometry	181
1.3 The number of lines in \mathcal{L} , and an intriguing discovery when generalization breaks down	182

Contents	xiii
1.4 A generalization of Gallai's result in the theory of block designs	183
Section 2: The pigeon-hole principle and some Ramsey numbers	184
2.1 A Hungarian competition problem and its generalization	184
2.2 Some Ramsey numbers	184
Section 3: Problems on lattice points	186
3.1 Lattice points and circles	186
3.2 Schoenberg's generalization of Steinhaus' problem	186
Section 4: Fermat's last theorem and related problems	187
Part III: Solutions	188
Section 1: The problem of Sylvester and Gallai, and related questions	188
Section 2: The pigeon-hole principle and some Ramsey numbers	194
Section 3: Problems on lattice points	199
Section 4: Fermat's last theorem and related problems	201
Appendix I: Definitions and basic results	205
Appendix II: Notes on mathematicians mentioned in the text	234
Appendix III: Recommended reading	241
Index	247