Contents

List of tables			
List	List of figures Foreword		
For			
Preface to the first edition Preface to the second edition			xxv
			xxviii
1	Unce	rtainty in forensic science	1
	1.1 1.2 1.3 1.4 1.5 1.6	Introduction Statistics and the law Uncertainty in scientific evidence 1.3.1 The frequentist method 1.3.2 Stains of body fluids 1.3.3 Glass fragments Terminology Types of data Probability 1.6.1 Introduction 1.6.2 A standard for uncertainty 1.6.3 Events 1.6.4 Subjective probability 1.6.5 Laws of probability 1.6.6 Dependent events and background information 1.6.7 Law of total probability 1.6.8 Updating of probabilities	1 2 5 6 7 9 12 15 16 16 18 20 21 23 25 29 32
2	Vari	ation	, , 35
	2.1 2.2 2.3	Populations Samples and estimates Counts 2.3.1 Probabilities 2.3.2 Summary measures 2.3.3 Binomial distribution 2.3.4 Multinomial distribution 2.3.5 Hypergeometric distribution 2.3.6 Poisson distribution 2.3.7 Beta-binomial distribution Measurements 2.4.1 Summary statistics 2.4.2 Normal distribution	3 7 40 40 41 43 44 45 51 52 52

viii	Co	ntents		
		2.4.3	Student's <i>t</i> -distribution	60
		2.4.4	Beta distribution	62
		2.4.5	Dirichlet distribution	63
		2.4.6	Multivariate Normal and correlation	64
3	The c	evaluat	ion of evidence	69
	3.1	Odds		69
		3.1.1	Complementary events	69
		3.1.2	Examples	70
		3.1.3	Definition	70
	3.2		Theorem	72
		3.2.1	Statement of the theorem	72
	2.2	3.2.2	Examples	73
	3.3		in interpretation	78
		3.3.1	Fallacy of the transposed conditional	79
		3.3.2	Source probability error	81
		3.3.3 3.3.4	Ultimate issue error	82
		3.3.5	Defender's fallacy Probability (another match) error	82
		3.3.6	Numerical conversion error	83
		3.3.7	False positive fallacy	84
		3.3.8	Uniqueness	85
		3.3.9	Other difficulties	86 87
			Empirical evidence of errors in interpretation	89
	3.4	The od	lds form of Bayes' theorem	95
		3.4.1	Likelihood ratio	95
		3.4.2	Logarithm of the likelihood ratio	99
	3.5		llue of evidence	101
		3.5.1	Evaluation of forensic evidence	101
		3.5.2	Summary of competing propositions	105
		3.5.3	Qualitative scale for the value of the evidence	107
		3.5.4	Misinterpretations	111
		3.5.5	Explanation of transposed conditional and defence fallacies	112
	3.6	3.5.6	The probability of guilt	116
	3.0	Summa	dry	118
4	Histo	rical re	eview	119
	4.1	Early h		119
	4.2		reyfus case	122
	4.3	Statisti	cal arguments by early twentieth-century forensic scientists	125
	4.4		v. Collins	126
	4.5	Discrin	ninating power	129
		4.5.1	Derivation	129
		4.5.2 4.5.3	Evaluation of evidence by discriminating power	130
		4.5.3	Finite samples	133
		4.5.5	Combination of independent systems	135
	4.6		Correlated attributes cance probabilities	136
	****	4.6.1	Calculation of significance probabilities	141
		4.6.2	Relationship to likelihood ratio	141
		4.6.3	Combination of significance probabilities	144
			produintes	147

			Contents	ix
	4.7	Coincidence probabilities 4.7.1 Introduction 4.7.2 Comparison stage		149 149 151
	4.8	4.7.3 Significance stage Likelihood ratio		151 153
5	Bayes	sian inference		157
	5.1	Introduction		157
	5.2	Bayesian inference for a Bernoulli probability		160 162
	5.3	Estimation with zero occurrences in a sample Estimation of products in forensic identification		165
	5.4 5.5	Bayesian inference for a Normal mean		166
	5.6	Interval estimation		170
	5.0	5.6.1 Confidence intervals		170
		5.6.2 Highest posterior density intervals		172
		5.6.3 Bootstrap intervals		172
	5.7	5.6.4 Likelihood intervals Odds ratios		173 175
6	Samp	oling		179
				179
	$6.1 \\ 6.2$	Introduction Choice of sample size		182
	0.2	6.2.1 Large consignments		182
		6.2.2 Small consignments		186
	6.3	Quantity estimation		190
		6.3.1 Frequentist approach		190 191
		6.3.2 Bayesian approach		197
	6.4	Misleading evidence		
7	Inter	pretation		205
	7.1	Concepts and court cases		205
	• • •	7.1.1 Relevant population		205
		7.1.2 Consideration of odds		206 208
		7.1.3 Combination of evidence		208
	~ 3	7.1.4 Specific cases Pre-assessment and relevant propositions		214
	7.2	7.2.1 Levels of proposition		214
		7.2.2 Pre-assessment of the case		217
		7.2.3 Pre-assessment of the evidence		220
	7.3	Assessment of value of various evidential types		221 221
		7.3.1 Earprints		223
		7.3.2 Firearms and toolmarks		226
		7.3.3 Fingerprints 7.3.4 Speaker recognition		228
		7.3.4 Speaker recognition 7.3.5 Hair		229
		7.3.6 Documents		231
		7.3.7 Envelopes		233
		7.3.8 Handwriting		235
		7 3 9 Paint		239 239
	7.4	Pre-data and post-data questions		£)7

Contents

x

8	Tra	nsfer evidence	245
	8.1	The likelihood ratio	245
		8.1.1 Probability of guilt	245
		8.1.2 Justification	246
		8.1.3 Combination of evidence and comparison of	
	_	more than two propositions	248
	8.2	Correspondence probabilities	254
	8.3	Direction of transfer	255
		8.3.1 Transfer of evidence from the criminal to	
		the scene	255
		8.3.2 Transfer of evidence from the scene to the	
		criminal 8.3.3 Transfer probabilities	260
		probabilities	261
		8.3.4 Two-way transfer 8.3.5 Presence of non-matching evidence	270
	8.4		271
	8.5	Grouping Relevant populations	271
	0.5	Relevant populations	274
9	Disc	crete data	283
	9.1	Notation	283
	9.2	Single sample	283
		9.2.1 Introduction	283
		9.2.2 General population	286
		9.2.3 Particular population	286
	0.3	9.2.4 Examples	286
	9.3	Two samples	288
		9.3.1 Two stains, two offenders	288
	0.4	9.3.2 DNA profiling	291
	9.4	Many samples	292
		9.4.1 Many different profiles 9.4.2 General cases	292
	9.5		293
	9.3	Relevance of evidence and relevant material	295
			295
		jeetite produbilities	296
		propositions	296
		9.5.4 Intermediate association propositions 9.5.5 Examples	297
		9.5.6 Two stains, one offender	298
	9.6	Summary	302
	- • • •	9.6.1 Stain known to have been left by offenders	304
		9.6.2 Relevance: stain may not have been left by	304
		offenders	305
		9.6.3 Relevance and the crime level	307
	9.7	Missing persons	308
		9.7.1 Case 1 (Kuo. 1982)	309
		9.7.2 Case 2 (Ogino and Gregonis,1981)	309
	0.0	9.7.3 Calculation of the likelihood ratio	310
	9.8	Paternity: combination of likelihood ratios	312
		9.8.1 Likelihood of paternity	314
		9.8.2 Probability of exclusion in paternity	317

		Contents	xi
10	Conti	nuous data	319
	10.1	The likelihood ratio	319
	10.2	Normal distribution for between-source data	321
	10.2	10.2.1 Sources of variation	322
		10.2.2 Derivation of the marginal distribution	322
		10.2.3 Approximate derivation of the likelihood ratio	324
		10.2.4 Lindley's approach	326
		10.2.5 Interpretation of result	327
		10.2.6 Examples	328
	10.3	Estimation of a probability density function	330
	10.4	Kernel density estimation for between-source data	337
		10.4.1 Application to medullary widths of cat hairs	339
		10.4.2 Refractive index of glass	339
	10.5	Probabilities of transfer	342
		10.5.1 Introduction	342
		10.5.2 Single fragment	342
		10.5.3 Two fragments	345
		10.5.4 A practical approach to glass evaluation	349
		10.5.5 Graphical models for the assessment of transfer	
		probabilities	352
	10.6	Approach based on t-distribution	353
	10.7	Appendix Derivation of V when the between-source	
		measurements are assumed normally distributed	357
11	Multi	ivariate analysis	359
	11.1	Introduction	359
	11.2	Description of example	360
	11.3	-	362
	11.4	Hotelling's T ²	363
	11.5	Univariate Normality, two sources of variation	365
	11.6	Multivariate Normality. two sources of variation	366
	11.7	Caveat lector	371
	11.8	Summary	372
	11.9	Appendix	373
		11.9.1 Matrix terminology	373
		11.9.2 Determination of a likelihood ratio with an assumption of Normality	377
12	Fibre	·s	381
	13.1	Total destina	381
	12.1	Introduction Likelihood ratios in scenarios involving fibres	381
	12.2	. — 1 1 6 b — offender	382
			387
			388
		9	389
	122	12.2.4 Cross-transter Pre-assessment in fibres scenarios	392
	12.3		392
		. a to the contract of a contract of a contract of the contrac	392
			394
	12.4	12.3.3 Assessment of the expected value of the likelihood ratio The relevant population of fibres	396

13	DNA	profiling	
	13.1 13.2 13.3 13.4 13.5	Introduction Hardy-Weinberg equilibrium DNA likelihood ratio Uncertainity Variation in sub-population allele frequencies	
	13.6	Related individuals	
	13.7 13.8	More than two propositions	
	13.8	Database searching 13.8.1 Search and selection effect (double counting error)	
	13.9	Island problem	
		Mixtures	
	13.11		
14	Bayes	sian networks	
	14.1	Introduction	
	14.2	Bayesian networks	
		14.2.1 The construction of Bayesian networks	
	14.3	Evidence at the crime level	
		14.3.1 Preliminaries	
		14.3.2 Description of probabilities required	
	14.4	Missing evidence	
		14.4.1 Preliminaries	
		14.4.2 Determination of a structure for a Bayesian	
		network	
	14.5	14.4.3 Comments	
	14.5	Error rates	
		14.5.1 Preliminaries	
		14.5.2 Determination of a structure for a Bayesian network	
	14.6	Transfer evidence	
		14.6.1 Preliminaries	
		14.6.2 Determination of a structure for a Bayesian network	
		14.6.3 Comment on the <i>transfer</i> node	
	14.7	Combination of evidence	
	14.8	Cross-transfer evidence	
		14.8.1 Description of nodes	
		14.8.2 Probabilities for nodes	
	14.9	Factors to consider	
	14.10	14.9.1 Parameter choice Summary	
Rofo	rences		
Nota	tion		
Case	es		
Auth	Author index		
Subj	ubject index		

xii

Contents

List of Tables

1.1	Genotypic frequencies for locus <i>LDLR</i> amongst Caucasians in Chicago based on a sample of size 200 (from Johnson and	
	Peterson, 1999).	8
1.2	Refractive index measurements.	10
1.3	Genotype probabilities, assuming Hardy–Weinberg equilib-	
1.)	rium, for a diallelic system with allele probabilities p and q .	27
1.4	The proportion of people in a population who fall into the four	
1.4	possible categories of genetic markers.	29
2.1	Probabilities for the number of sixes, <i>X</i> , in four rolls of a fair	
∠.1	six-sided die	41
2.2	Intermediate calculations for the variance of the number of	
2.2	sixes, x, in four rolls of a fair six-sided die	43
2.3	Probabilities that a random variable X with a Poisson distribu-	
۷. ع	tion with mean 4 takes values 0, 1, 2, 3, 4 and greater than 4	50
2.4	Values of cumulative distribution function $\Phi(z)$ and its	
2.1	complement $1 - \Phi(z)$ for the standard Normal distribution for	
	given values of z.	57
2.5	Probabilities for absolute values from the standard Normal	
2.5	distribution function	57
2.6	Percentage points $t_{(n-1)}(P)$ for the t-distribution for given	
	values of sample size n , degrees of freedom $(n-1)$ and P , and	
	the corresponding point $z(P)$ for the standard Normal distri-	
	hution	61
3.1	Two-by-two contingency table for frequencies for the tabula-	
	tion of patients with or without a disease $(S \text{ or } \overline{S})$ given a	
	blood test positive or negative $(R \text{ or } R)$.	74
3.2	Two by two contingency table for probabilities for the tabu-	
	lation of patients with or without a disease (S or \bar{S}) given a	
	blood test positive or negative (R or R).	75
3.3	Hypothetical results for deaths amongst a population.	76

1.1

xiv	List of tables	
3.4	Probability θ of at least one match, given a frequency of the	
3.5	trace evidence of γ , in a population of size 1 million. Evidence occurs with RMP γ . Smallest number ψ of people to	83
	be observed before a match with the evidence occurs with a	
	given probability, $Pr(M) = 0.5, 0.9; \ \psi_5 = \log 0.5 / \log (1 - \gamma)$.	
	$\psi_9 = \log 0.1/\log(1-\gamma)$, n_5 is the smallest integer greater than ψ_5 , n_9 is the smallest integer greater than ψ_9 .	85
3.6	The probability, θ' , of at least one match with the evidence	83
3.7	which occurs with RMP γ , when $n' = 1/\gamma$ people are tested. Frequency of Kell and Duffy types by colour in a hypothetical	85
	ucal area. (Reproduced by permission of The Forensic Science	
3.8	Society.).	97
3.0	Effect on prior odds in favour of H_p relative to H_d of evidence E with value V of 1 000. Reference to background information	
2.0	i is omitted.	104
3.9 3.10	Value of the evidence for each genotype.	107
	Qualitative scale for reporting the value of the support of the evidence for H_p against H_d (Evett et al., 2000a).	107
3.11	The values of the logarithm of the posterior odds in favour of	107
	an issue determined from the values of the logarithm of the prior odds in favour of guilt (log(Prior odds)) and the logarithm	
	of the fixelinood ratio (Aitken and Taroni 1998). The values	
	in the body of the table are obtained by adding the appropriate	
	row and column values. Logarithms are taken to base 10. The verbal description is taken from Calman and Royston (1997).	
3.12	(Reproduced by permission of The Forensic Science Society)	110
3.12	Probability of guilt required for proof beyond reasonable doubt (Simon and Mahan, 1971).	
4.1	Probabilities suggested by the prosecutor for various charge	116
4.2	teristics of the couple observed in the case of People v. Collins	127
1.2	Allelic frequencies for $TPOX$ locus for Swiss and NZ Caucasians and the probability Q_{TPOX} of a match.	127
4.3	Allelic frequencies for TH01 locus for Swiss and NZ Caucasians	136
4.4	and the probability Q_{THOI} of a match. The calculation of discriminating power (DP) for Normal distributions of policy and the probability Q_{THOI} of a match.	136
	buttons of p dimensions.	139
4.5	Significance probabilities P for refractive index x of glass for mean $\theta = 1.518.458$ and	197
	mean $\theta_0 = 1.518458$ and standard deviation $\sigma = 4 \times 10^{-5}$ and decisions assuming a significance level of 5%	1.42
4.6	variation in the likelihood ratio V_{ij} as given by (4.7) with	143
	sample size n , for a standardised distance $z_n = 2$, a result which is significant at the 5% level.	
	- SCarre de tric 5/0 icvel.	147

5.1

5.2 5.3

6.1

6.2

6.3

6.4

circulation.

International.)

International.)

 θ_0), with a beta prior for which $\alpha = \beta = 1$.

with permission from ASTM International.)

permission from ASTM International.).

standard deviation (s) of the quantities found in the packages examined which contain drugs are 0.0425 g and 0.0073 g. The parameters for the beta prior are $\alpha = \beta = 1$. Numbers in brackets are the corresponding frequentist lower bounds using the fpc factor (6.2). (Reprinted with permission from ASTM

Estimates of quantities q of drugs (in grams), in a consignment

of m+n units, according to various possible burdens of proof, expressed as percentages $P = 100 \times Pr(Q > q \mid m, z, n, \bar{x}, s)$ in 2600 packages when 6 packages are examined (m = 6, n =2594) and z = 6, 5, or 4 are found to contain drugs. The mean (\bar{x}) and standard deviation (s) of the quantities found in the packages examined which contain drugs are ().0425g and 0.0073 g. The parameters for the beta prior are $\alpha = \beta = 1$. Numbers in brackets are the corresponding frequentist lower bounds without using the fpc factor (6.8). (Reprinted with

Numbers of banknotes contaminated.

xv

164 176

178

184

185

194

196

xvi	List of tables	
6.5	Probabilities of strong misleading evidence $M(n)$ and weak	
7.1	evidence $W(n)$ for boundary values k of 8 and 32 for strong evidence and sample sizes n of 5, 10 and 20.	203
,,_	Examples of the hierarchy of propositions. (Reproduced by permission of The Forensic Science Society.)	215
7.2	Hypothetical relative frequencies for the maximum CMS	217
	count y for bullets fired from the same our $f(y \mid SC)$ and for	
	bullets fired from different guns $f(u \mid DG)$, and likelihood ratios	
	$V = f(y \mid SG)/f(y \mid DG)$. (Reprinted with permission from ASTM International.)	
7.3	Poisson probabilities for the maximum CMS count y for bullets	224
	med from the same gun $Pr(Y = u \mid SG)$ (7.1) with mean	
	$\Lambda_S = 3.91$ and for bullets fired from different guns $Pr(V = v)$	
	DG) (7.2) With mean $\lambda_{\rm p} = 1.325$ and likelihood ratio $V =$	
	$Pr(Y = y \mid SG)/Pr(Y = y \mid DG)$. (Reprinted with permission from ASTM International.)	
7.4	Values of a probabilistic γ upper bound for the probability ϕ_0	225
_ ~	or a large match for different values of n and γ	242
7.5	values of a probabilistic y lower bound for the likelihood ratio	£ 12
	$1/\phi_0$ for different values of n and γ , with values rounded down.	
8.1	Probability evidence in <i>State v. Klindt</i> (altered for illustrative	242
	purposes) from Lenth (1986).	240
8.2	Frequencies of Ruritanians and those of genetype F for logue	249
8.3	Bobbe in a hypothetical population	256
0.5	Distribution of blood groups of innocently acquired bloodstains on clothing of people of transport	
	on clothing of people of type <i>O</i> , compared with the distribution in the general population.	
8.4	Critical values $r(\alpha, n)$ for the range of a sample of size n from	268
0	a standardised Normal distribution, from Owen (1962)	273
8.5	critical values $\Lambda(\alpha, n)$ for samples of size n for the division	273
8.6	Stouping algorithm from Triggs of al. (1007)	274
	Probability that a criminal lived in a particular area, given the crime was committed in Auckland, New Zealand.	
9.1	Gene frequencies for New Zealand in the ADO	280
9.2	oene requencies for Chinese in New Zealand in the ARO	287
9.3	system,	287
9.4	Phenotypes for two cases of missing persons.	308
	Gene frequencies and phenotypic incidences for Case 1 (Kuo, 1982).	
9.5	Gene frequencies and phenotypic incidences for Case 2 (O. :	309
0.7	and Oregonis, 1981).	309
9.6 9.7	Frequencies for up to three codominant alleles.	310
2./	Relative frequencies for ABO system.	310

	List of tables	xvii
9.8	Probabilities that the parents will pass the specified stain phen-	
	otype, Case 1.	311
9.9	Probabilities that the parents will pass the specified pheno-	211
9.10	types, Case 2. Two pieces of evidence on DNA markers.	311 312
9.11	Posterior probabilities of paternity for various prior probabilities) 1 <u>~</u>
	for evidence for alleged father $E_1 = 11 - 13$, $E_2 = 18 - 18$.	316
9.12	Hummel's likelihood of paternity.	317
10.1	Likelihood ratio values for varying values of $(y - \bar{x})/\sigma$ and	
10.3	$(y-\mu)/\tau$.	326
10.2	Value of $\tau(2^{1/2}\sigma)^{-1} \exp(-\frac{1}{2}\lambda^2 + \frac{1}{2}\delta^2)$ (10.7) as a function of $\lambda = \bar{x} - \bar{y} /(2^{1/2}\sigma)$ and $\delta = z - \mu /\tau$ for $\tau/\sigma = 100$.	329
10.3	Medullary widths in microns of 220 cat hairs (Peabody <i>et al.</i> .	127
10.3	1983).	332
10.4	Value of the evidence for various values of \bar{x} and \bar{y} , the	
	smoothing parameter λ and the within-cat standard deviation	
	σ ; $m = n = 10$ throughout; $s = 23$ microns.	339
10.5	Refractive index of 2269 fragments of float glass from build-	3.40
10.6	ings. Lambert and Evett (1984). Coincidence probability and value of the evidence (kernel and	34()
10.0	Lindley approaches) for various values of \bar{x} and \bar{y} and the	
	smoothing parameter λ (for the kernel approach); $m = 10$.	
	$n = 5$; within-window standard deviation $\sigma = 0.000$ 04.	
	between-window standard deviation $\tau = 0.004$; overall mean	
	$\mu = 1.5182.$	341
10.7	Distributional parameters for glass problems.	344
10.8	Transfer probabilities for glass problems.	344
10.9	Some values for the likelihood ratio V for the single-fragment	345
10.10	case, from Evett (1986). Possible sources of two fragments.	345
10.11	Refractive indices of glass fragments for Johnston, recovered,	
	and a control set with means, separate and pooled standard	
	deviations (s.d). The number of recovered fragments $n_y = 11$	
	and the number of control fragments $n_x = 10$. Example) = =
10.13	presented in Walsh et al. (1996).	355
10.12	Summary statistics for concentration of dye CI 14720 in illicit	356
12.1	pills (Goldmann <i>et al.</i> , 2004). Findings from the analysis of the hair combings.	394
12.2	Events and probabilities relating to findings under H_p and H_d .	395
12.3	Likelihood ratios for the outcomes from Table 12.1 with $t_0 =$	
	$0.01, t = 0.04, t_1 = 0.95; p_0 = 0.78, p_1 = 0.22; s_s = 0.92.$	
	$s_l = 0.08$; $m = 0.05$, as proposed by Champod and Jackson	207
123	(2000).	396
13.1	Hardy-Weinberg proportions for a locus with two alleles. A	402
	and a , with frequencies p and q such that $p+q=1$.	•~-

xviii	List of tables	
13.2	Observed and expected frequencies of <i>HumTH01</i> genotypes based on 95 unrelated Turkish individuals (from Çakir <i>et al.</i> ,	
13.3	2001). Effects of population structure, as represented by F_{ST} , on the likelihood ratio, the reciprocal of the conditional match probability (13.8) for heterozygotes between alleles with equal	403
13.4	mediancy p . Match probability $Pr(G \mid G, H_d, I)$ that a relative has the same genotype as the suspect and the corresponding value for V	408
13.5	assuming allelic frequencies of 0.1, from Weir and Hill (1993). (Reproduced by permission of The Forensic Science Society.) Effects of family relatedness on match probability, $Pr(G_c \mid G_s, H_d, I)$, from Weir (2001a). Note the use of θ for F_{ST} for clarity.	410
13.6	General match probability values recommended for use when reporting full SGM-plus profile matches, with an F_{ST} value of 0 in situation 6 and a value of 0.02 for situations 1–5, from Foreman and Evett (2001), (Reproduced by permission	411
13.7	Likelihood ratio for three-allele mixed sample, heterozygous victim and homozygous suspect. The victim has alleles a, b , the suspect has allele c . There are three ethnic groups under consideration, labelled 1, 2 and 3. The co-ancestry coefficient F_{ST} for the ethnic group, 1, of the unknown donor is labelled θ_1 for clarity. The allelic frequencies are p_{a1}, p_{b1} and p_{c1} in ethnic group 1. Ethnicities of the unknown donor, the victim and the suspect are considered. From Fung and Hy (2002)	411
13.8	Posterior odds that a suspect is the source of a sample that reportedly has a matching DNA profile, as a function of prior odds, random match probability, and false positive probability. Extracted from Thompson et al. (2003). (Reprinted with	423
14.1	Conditional probabilities for transfer with one group. The features of the control object are X. and the features of the recovered fibres are Y, which may be from 0, 1 or 2 groups. These recovered fibres may be present by change along (1)	426
14.2	Conditional probabilities for transfer with many groups, as illustrated in Section 12.3.3. The transfer may be of no fibres (t_0) , a small amount (t_s) or a large amount (t_l) . A group may be present (p_1) or not (p_0) , and the group may be small (s_s) or large (s_l) . The outcome O has five categories: no groups, one not-matching group, one small matching group, one large	445
	matching group and two groups.	447

List of Figures

55

187

2.2	Selected tail area probabilities for a standard Normal random	
	variable Z: (a) $Pr(Z > 1)$, (b) $Pr(Z > 2)$, (c) $Pr(Z < 2)$.	
	(d) $Pr(Z > 2.5)$.	58
4.1	Discrimination between two groups, identified by \triangle and by \bigcirc ,	
	with two perfectly correlated variables.	140
5.1	Prior density function $f(\theta \mid \alpha, \beta)$ with $\alpha = 61$, $\beta = 44$, likeli-	
	hood function $L(\theta \mid n, x)$ with $n = 372$, $x = 201$, and posterior	
	density function $f(\theta \mid x + \alpha, n - x + \beta)$ for a Bernoulli para-	
	meter. (Reproduced from Weir, 1996a, by permission of	
	Sinauer Associates, Inc.)	162
5.2	Standardised likelihood function for the proportion of people	
	of blood group Γ , from a sample of size 30 in which 6 were of	
	group Γ . A likelihood interval, derived from the observed data.	
	of fairly strong support for the values of γ included within it	
	is indicated with the dotted lines: (0.081, 0.372).	174
6.1	The prior probability $1 - F(\theta)$ that the proportion of units in a	
	consignment is greater than θ , for various choices of α and β :	
	$\alpha = \beta = 1$ (dot-dashed curve). $\alpha = \beta = 0.5$ (solid). $\alpha = 0.065$.	
	$\beta = 0.935$ (dotted). (Reprinted with permission from ASTM	
	International.)	186
6.2	The posterior probability $1 - F(\theta)$ that the proportion of units	
	in a consignment is greater than θ , for various choices of α	
	and β : $\alpha = \beta = 1$ (dot-dashed curve). $\alpha = \beta = 0.5$ (solid). $\alpha =$	
	$0.065, \beta = 0.935$ (dotted), after observation of four units, all	
	found to be illegal. The corresponding probabilities that at	
	least 50% of the consignment contains illegal units are marked	
	as 0.985 ($\alpha = \beta = 0.5$), 0.970 ($\alpha = \beta = 1$), 0.950 ($\alpha =$	
	$0.065, \beta = 0.935$). (Reprinted with permission from ASTM	
		10-

Probability density function for a Normal distribution, with

mean 0.7 and variance 0.005.

International.)

2.1

List of figures

ХX

6.3	The probability that the total quantity Q of drugs (in grams)	
	in a consignment of 26 packages is greater than q when 6	
	packages are examined and 6 (solid curve), 5 (dashed), or	
	4 (dot-dashed) are found to contain drugs. The mean and	
	standard deviation of the quantities found in the packages	
	examined which contain drugs are 0.0425 g and 0.0073 g.	
	The parameters for the beta prior are $\alpha = \beta = 1$. (Reprinted	
	with permission from ASTM International.)	105
6.4	The probability that the total quantity Q of drugs (in grams)	195
	in a consignment of 2600 packages is greater than q when	
	6 packages are examined and 6 (solid curve), 5 (dashed), or	
	4 (dot-dashed) are found to contain drugs. The mean and	
	standard deviation of the quantities found in the packages	
	examined which contain drugs are 0.0425g and 0.0073g	
	The parameters for the beta prior are $\alpha = \beta = 1$ (Reprinted	
	with permission from ASTM International)	196
6.5	Bump function for the probability of misleading evidence	170
	$Pr_1\left(\frac{\pi}{f_{1n}} > k\right)$ for $k = 8$ and $k = 32$ as a function of c, the	
	distance from the true mean to the alternative, in standard	
	errors. (Royall, 2000; reprinted with permission from the	
	Journal of the American Statistical Association, Copyright 2000	
0.7	by the American Statistical Association. All rights reserved.)	201
9.1	Variation in the logarithm to base 10 of the likelihood ratio	
	V of the evidence with p, the probability that the stain would	
	have been left by the suspect even though he was innocent	
	of the offence, for various values of r the probability that	
	the stain would have been left by one of the offenders. The	
	number of offenders, k, equals 4 and the relative frequency of	
	the profile γ is 0.001. Adapted from Evett (1993a), with the	
	inclusion of a curve for $r = 0$. The dotted line at $\log(V) = 0$	
	indicates where the evidence is equally likely under both propositions.	
10.1		301
	Refractive index measurements from 2269 fragments of float glass from buildings (from Lambert and Evett, 1984).	
10.2	Medullary width (in microns) of 220 cat hairs (from Peabody	323
	et al., 1983).	
10.3	Examples of kernel density estimates showing individual	331
	kernels. Smoothing parameter values are (a) $\lambda = 0.5$ and (b)	
	$\lambda = 1$.	
10.4	Medullary widths, in microns, of cat hairs (Peabody et al.,	333
	1983) and associated kernel density estimate with smoothing	
	parameter equal to 0.09.	225
		335

	List of figures	xxi
10.5	Medullary widths, in microns, of cat hairs (Peabody <i>et al.</i> , 1983) and associated kernel density estimate with smoothing	
10.6	parameter equal to 0.50.	335
10.6	Kernel density estimate with smoothing parameter 0.025 of refractive index measurements from 2269 fragments of float	
10.7	glass from buildings (Lambert and Evett, 1984). Kernel density estimate with smoothing parameter ().25 of	336
10.7	refractive index measurements from 2269 fragments of float glass from buildings (Lambert and Evett, 1984).	337
10.8	The difference in refractive index measurements (higher –))/
	lower) for each pair of fragments for individuals who had two fragments of glass on their clothing, from Harrison <i>et al.</i>	
	(1985). (Reproduced from Evett, 1986, by permission of The	147
10.9	Forensic Science Society.) Graphs of $\log_{10} \phi(1)$, $\log_{10} \phi(2)$ and $\log_{10} V = \log_{10} (\phi(1) + \phi(2))$	347
	$\phi(2)$) against $ \bar{y} - \bar{x} /\sigma$ for $\bar{y} = \mu$, for the transfer of two fragments of glass from the scene of the crime to the criminal:	
	(a) $ y_1 - y_2 = \sigma$, (b) $ y_1 - y_2 = 4\sigma$. The value of the evidence	
	is $V = \phi(1) + \phi(2)$. The dotted line is $\log_{10} V$. (Adapted from	
	Evett. 1986.)	348
14.1	Basic connections in Bayesian networks: (a) serial, (b) diver-	
	ging and (c) converging.	432
14.2	Bayesian network for evidence <i>E</i> and proposition <i>H</i> .	435
14.3	Bayesian network for a serial connection for a reported match RM in a DNA profile, where M denotes a match and H a	
	proposition.	436
14.4	Four-node network for evaluation of evidence at the crime level.	437
14.5	Bayesian network fragments representing the relation between (a) the variables E and H , and (b) the variables M	
	and E; (c) Bayesian network for missing evidence.	441
14.6	Bayesian network for error rates. The probabilistic dependen-	4.1.3
	cies are indicated on the right-hand side of each node.	443
14.7	Five-node network: no outcome.	445
14.8	Five-node network: outcome, converging and serial in Bayesian networks.	446
14.9	Complete network for evaluation of cross-transfer evidence in DNA profiles. (Reprinted from Aitken et al., 2003, with	
	permission from Elsevier.)	451