INHALT

Vorwort	V
Einleitende Vorbemerkung	1
ERSTES KAPITEL: BLICK AUF DIE GRUNDLAGE DER VORGRIECHISCHEN MATHEMATIK	N
A. Rechentechnik	3 3 5
B. Algebra 1. Ägyptische Algebra 2. Babylonische Algebra	7 7 8
C. Ägyptische und babylonische Geometrie	18
ZWEITES KAPITEL: DIE BEGRÜNDUNG DER WISSE SCHAFTLICHEN MATHEMATIK DURCH DIE GRIECHTA. Die frühgriechische Mathematik 1. Zahlzeichen und Rechnen 2. Die Anfänge der griechischen Geometrie 3. Der Bericht des Eudemos über die Quadratur der "Möndchen" durch Hippokrates von Chios 4. Die Arithmetik der Spielsteine (psēphoi) 5. Die Lehre vom Geraden und Ungeraden	23 23 24 29 34 37
 B. Die Grundlegung der Mathematik des Infinitesimalen 1. Die ersten Betrachtungen über das Unendlichkleine (Zenon 	41
von Elea, Anaxagoras)	41 43 55
4. Die Analyse des Unendlichkeits- und Stetigkeitsbegriffs durch Aristoteles (Unendlichkeit — Kontinuität — Zenons Paradoxien)	64

Inbalt

C. Die Theorie der Proportionen	78
1. Anfänge der Proportionenlehre (Archytas u. a.)	78 79
3. Die klassische Fassung der allgemeinen Proportionenlehre durch Eudoxos	83
D. Die systematische Grundlegung der griechischen Mathematik innerhalb ihrer selbst	87
 Die logische Begründung durch die Axiomatik Der technische Sinn des Begriffs der mathematischen Existenz in der Antike	87 90
E. Die philosophische Reflexion auf die "elementare" Grund- legung und das Wesen der Mathematik	95
I. Logische und methodische Fragen	95
1. Platon über das Wesen der Mathematik	95
senschaft	96 98
II. Die Frage nach der Seinsweise der mathematischen Gegenstände	105
 Erste Betrachtungen zur Ontologie des Mathematischen durch die Pythagoreer Platon über den Seinssinn des Mathematischen Der "abstrakte" Charakter des Mathematischen nach 	105 109
Aristoteles	118 121
DRITTES KAPITEL: DIE GRUNDLEGUNG DER N EREN ABENDLÄNDISCHEN MATHEMATIK IM 17. JA HUNDERT	IEU- .HR-
DIE ENTDECKUNG DER ANALYSIS DES UNENDLICHEN	
A. Vorstadien der Infinitesimalrechnung	131
B. Die Entdeckung der analytischen Geometrie durch Des- cartes	139

Inhalt

C. Die Erfindung des Infinitesimalkalküls	144
 Die Fluxionsmethode (Barrow und Newton) Berkeleys Kritik an der Fluxionsrechnung Leibnizens Differentialrechnung 	145 156 158
VIERTES KAPITEL: DIE KRITISCHE MATHEMAT	
DES 19. JAHRHUNDERTS	LIK
ERSTER ABSCHNITT	
GRUNDLAGEN DER GEOMETRIE	
 Proklos über das 5. Postulat der Euklidischen, Elemente" J. Wallis' Beweis der 5. Forderung Euklids aus der Exi- 	168
stenz ähnlicher Figuren	170
3. Girolamo Saccheris "von jedem Makel befreiter Euklid"	171
4. Johann Heinrich Lamberts Theorie der Parallellinien. 5. Kants Lehre vom Raum	173
6. Gaußens Entdeckung der nichteuklidischen Geometrie	175 178
7. F. A. Taurinus' Eintreten für den euklidischen Raum	
als eindeutige, apriorische Form des äußeren Sinnes 8. B. Riemann über die Hypothesen, welche der Geometrie	183
zugrunde liegen	185
nichteuklidischen Geometrien	194
10. Felix Klein: gruppentheoretisches "Erlanger Programm"	197
11. Moritz Paschs axiomatische Begründung der Geometrie 12. David Hilberts "Grundlagen der Geometrie" (Wider-	199
spruchsfreiheit und Unabhängigkeit der geometrischen Axiome) 13. Poincaré über die geometrischen Axiome als zweck-	202
mäßige Konventionen	208
14. H. Dingler über den Aufbau einer technisch brauchbaren Geometrie	209
ZWEITER ABSCHNITT	
DIE GRUNDLAGEN DER ARITHMETIK, ANALYSIS UND MENGENLE	HRE
A. Arithmetik	213
Leibniz und Gauß über das Imaginäre	213
B. Analysis	217
 B. Bolzanos Beweis für den Zwischenwertsatz Die Entwicklung des Funktionsbegriffs nach H. Hankel R. Dedekinds "Schnitt"-Theorie der irrationalen Zahl 	217 219 224

Inhalt

 G. Cantors Definition der irrationalen Zahl P. du Bois-Reymonds "Metaphysik und Theorie der mathematischen Grundbegriffe: Größe, Grenze, Argument und Funktion" 	245251
C. Mengenlehre	272
1. Proklos über ein Paradoxon des Unendlichen 2. Aus B. Bolzanos "Paradoxien des Unendlichen" (Prag 1851) 3. Georg Cantors Mengenlehre	273 274 277
(Abzählbarkeit der algebraischen Zahlen, Nichtabzählbarkeit des Kontinuums — Erste Einführung der transfiniten Zahlen — Grundlagen einer allgemeinen Mannig faltigkeitslehre — "Inkonsistente" Vielheiten — J. v. Neumanns Begriff der "zu großen" Mengen — Dedekind und Cantor über ihre Vorstellung einer unendlichen Menge — Dedekinds "Beweis" für die Existenz unendlicher Mengen)	
FUNFTES KAPITEL: DIE GRUNDLAGENFORSCHU	JNG
DES 20. JAHRHUNDERTS	
A. Logizismus.	317
 G. Freges Kritik eines Leibnizschen Beweises und Definition des Begriffs der Zahl mit rein logischen Mitteln B. Russells logische Definition der Zahl B. Russell: Die Antinomien der Mengenlehre und ihre Auflösung durch die Theorie der logischen Typen 	317 322 323
R Intuitionismus	327
1. L. K. Kronecker gegen den Gebrauch irrationaler Zahlen	
 É. Borels Bedenken gegen den Begriff einer unstetigen Funktion allgemeinster Art	
sche Mengenlehre, unabhängig vom logischen Saiz vom ausgeschios	329
4. A. Kolmogoroffs Deutung der Brouwerschen Logik	
5. H. Weyl über die "Grundlagenkrise der Mathematik" (Halbintuitionismus und Intuitionismus)	336
C. Beweistheorie (Formalismus)	351
1. D. Hilberts axiomatische Definition der Zahl	351

Inbalt

2. Einige Betrachtungen von Leibniz zur "Charakteristik"	
(Zeichen und Dinge)	355
3. D. Hilberts erster Ansatz zu einem Widerspruchsfreiheits-	
beweis der Arithmetik	360
4. Charakteristische Proben aus Hilberts reifen Arbeiten zur	
Beweistheorie (Metamathematik)	370
5. E. Husserl über noetisch-noematische Stufen und ihre	
Charakteristik	384
6. Schelling über transfinite Reflexionen	387
7. Gentzens Beweis für die Widerspruchsfreiheit der Zah-	
lentheorie	387
8. P. Lorenzens konstruktive Begründung der Mathematik	392
9. P. Lorenzens Beweis für die Widerspruchsfreiheit der	
Analysis	398
Schlußwort	402
Quellenverzeichnis	403
Textkritische Anmerkungen	408
Bibliographie	410
Namenverzeichnis	415
Sachverzeichnis	420