Contents

1	Area, Number, and Limit Concepts in Antiquity	1
	Babylonian and Egyptian Geometry	1
	Early Greek Geometry	5
	Incommensurable Magnitudes and Geometric Algebra	10
	Eudoxus and Geometric Proportions	12
	Area and the Method of Exhaustion	16
	Volumes of Cones and Pyramids	19
	Volumes of Spheres	24
	References	28
2	Archimedes	29
	Introduction	29
	The Measurement of a Circle	31
	The Quadrature of the Parabola	35
	The Area of an Ellipse	40
	The Volume and Surface Area of a Sphere	42
	The Method of Compression	54
	The Archimedean Spiral	54
	Solids of Revolution	62
	The Method of Discovery	68
	Archimedes and Calculus?	74
	References	75
3	Twilight, Darkness, and Dawn	77
	Introduction	77
	The Decline of Greek Mathematics	78
	Mathematics in the Dark Ages	80
	Maniemans in the Date	ix

		Contents
X		
		81

	m A 1 Companion	81
	The Arab Connection Notion and Variability	86
	Medieval Speculations on Motion and Variability	91
	Medieval Infinite Series Summations	93
	The Analytic Art of Viète	95
	The Analytic Geometry of Descartes and Fermat	97
	References	
4	Early Indivisibles and Infinitesimal Techniques	98
•		98
	Introduction Johann Kepler (1571–1630)	99
	Cavalieri's Indivisibles	104
	Cavalieri's indivisiones	10 9
	Arithmetical Quadratures	113
	The Integration of Fractional Powers	118
	The First Rectification of a Curve	120
	Summary	121
	References	
_		122
5	Early Tangent Constructions	122
	Introduction	122
	Fermat's Pseudo-equality Methods	125
	Descartes' Circle Method	127
	The Rules of Hudde and Sluse	132
	Infinitesimal Tangent Methods	134
	Composition of Instantaneous Motions	138
	The Relationship Between Quadratures and Tangents	136
	References	141
		142
6	Napier's Wonderful Logarithms	
	John Napier (1550-1617)	142
	The Original Motivation	143
	Napier's Curious Definition	148
	Arithmetic and Geometric Progressions	151
	The Introduction of Common Logarithms	153
	Logarithms and Hyperbolic Areas	154
	Newton's Logarithmic Computations	158
	Mercator's Series for the Logarithm	161
	References	164
		166
7	The Arithmetic of the Infinite	100
•		166
	Introduction Wallis' Interpolation Scheme and Infinite Product	170

Contents		Xi

	Quadrature of the Cissoid The Discovery of the Binomial Series References	176 178 187
8	The Calculus According to Newton	189
	The Discovery of the Calculus	189
	Isaac Newton (1642-1727)	190
	The Introduction of Fluxions	191
	The Fundamental Theorem of Calculus	194 196
	The Chain Rule and Integration by Substitution	200
	Applications of Infinite Series	200
	Newton's Method The Reversion of Series	201
	Discovery of the Sine and Cosine Series	205
	Methods of Series and Fluxions	209
	Applications of Integration by Substitution	210
	Newton's Integral Tables	212
	Arclength Computations	217
	The Newton-Leibniz Correspondence	222
	The Calculus and the Principia Mathematica	224
	Newton's Final Work on the Calculus	226
	References	230
9	The Calculus According to Leibniz	231
	Gottfried Wilhelm Leibniz (1646-1716)	231
	The Beginning—Sums and Differences	234
	The Characteristic Triangle	239
	Transmutation and the Arithmetical Quadrature of	
	the Circle	245
	The Invention of the Analytical Calculus	252
	The First Publication of the Calculus	258
	Higher-Order Differentials	260
	The Meaning of Leibniz' Infinitesimals	264 265
	Leibniz and Newton	263 267
	References	207
10	The Age of Euler	268
	Leonhard Euler (1707-1783)	268
	The Concept of a Function	270
	Euler's Exponential and Logarithmic Functions	272
	Euler's Trigonometric Functions and Expansions	275
	Differentials of Elementary Functions à la Euler	277

cii	Со	ntents
	Interpolation and Numerical Integration	281
	Taylor's Series	287
	Fundamental Concepts in the Eighteenth Century	292
	References	299
11	The Calculus According to Cauchy, Riemann, and Weierstrass	301
	Functions and Continuity at the Turn of the Century	301
	Functions and Continuity at the Turn of the Contact	304
	Fourier and Discontinuity Bolzano, Cauchy, and Continuity	308
	Cauchy's Differential Calculus	312
	The Cauchy Integral	317
	The Riemann Integral and Its Reformulations	322
	The Arithmetization of Analysis	329
	References	333
12	Postscript: The Twentieth Century	335
	-	
	The Lebesgue Integral and the Fundamental Theorem of	335
	Calculus The Vindication of Fuler?	341
	Non-standard Analysis—The Vindication of Euler? References	346
	Keleiences	
	Index	347