Contents

	Introduction	1
	I. FUNDAMENTALS ON SESQUILINEAR FORMS	
1.	Orthosymmetric sesquilinear forms	4
	1.1 The underlying division rings p. 4 - 1.2 The concept of sesquilinear form p. 5 - 1.3 Orthosymmetric forms are ϵ -hermitean p. 6 - 1.4 Zoology of forms p. 10 - 1.5 Scaling of forms p. 10 - 1.6 Existence of ϵ -hermitean forms p. 11	
2.	Trace - valued forms and hyperbolic planes	13
3.	Positive forms	16
4.	Dense subspaces	19
5.	Finite dimensional subspaces	20
6.	Closed subspaces	23
7.	Isometries between sesquilinear spaces	28
8.	The weak linear topology $\sigma(\phi)$ on (E, ϕ)	33
9.	Orthostable lattices of subspaces	39
	References	46
	Appendix I. A division ring which admits no sesquilinear form	
	and a remark on Baer orderability	50
	1. Dickson's Example p.50 - 2. There is no antiautomorphism p.53 - 3. Modifying Dickson's Example p.55 - 4. Baer ordered *-fields p.57	
	II. DIAGONALIZATION OF \aleph_0 - FORMS	
1.	Introduction	61
2.	Diagonalization	63
3.	Stability (Definition)	67
4.	A stable form is determined by the elements it represents	70
5.	Quasistability	74

76

76

81

6.

7.

Weak stability

References

A lemma on supplements

VIII

	Appendix I. A few examples of "suitable" fields	83
	0. Introduction	83
	1. Commutative nonformally real fields (characteristic ‡ 2)	83
	1.1 Nonformally real fields k with finite multiplicative group \Re/\Re^2 p.84 - 1.2 The C_i -fields p.85	
	2. Commutative formally real fields	86
	3. Commutative fields in characteristic 2	87
	4. Involutorial division rings suitable for isotropic hermi-	
	tean forms	88
	5. A formally real involutorial division ring	89
	III. WITT DECOMPOSITIONS FOR HERMITEAN \aleph_0 - FORMS	
1.	Introduction	96
2.	The lattice that belongs to the problem	97
3.	Metabolic decompositions	99
4.	A lemma on orthogonal separation of totally isotropic subspa-	
	ces	101
5.	Reducing the proof of Thm. 2 to the case of a nondegenerate E*	102
6.	Discussion of properties (1) and (2) when E* is nondegenerate	103
7.	Proof of Theorem 2 when E* is nondegenerate	105
8.	Some general remarks on the proof of Theorem 2	107
	References	109
IV.	. ISOMORPHISMS BETWEEN LATTICES OF LINEAR SUBSPACES WHICH ARE	
	INDUCED BY ISOMETRIES	
1	Tubus 2	
1. 2.	Introduction	110
3.	The kind of lattices admitted	110
4.	Statement of Theorem 1 and an outlay of its proof	113
5.	The construction problem	114
6.	Solution of the construction problem in the irreducible case	116
٥.	Solution of the construction problem in the reducible case	
7.	(end of the proof of Theorem 1)	119
8.	Remarks on the case of not complete sublattices	119
9.	Non-alternate forms: Theorem 2	120
	Proof of Theorem 2	122
TO.	Remarks on the method	124
	References	126

V.	SUBSPACES IN TRACE - VALUED SPACES WITH MANY ISOTROPIC VECTORS	
1.	Introduction	127
2.	Classification of a single subspace	127
3.	An application to Witt decompositions	131
4.	Remarks on canonical bases	131
	References	135
		133
	VI. ORTHOGONAL AND SYMPLECTIC SEPARATION	
1.	Introduction	136
2.	On the lattice $V(F,G)$ of an orthogonal pair	137
3.	Orthogonal separation in trace - valued spaces	141
4.	Symplectic separation in trace - valued spaces	145
	References	149
	VII CIACCIPICATION OF HERMITTEN POPUL CO.	
_	VII. CLASSIFICATION OF HERMITEAN FORMS IN CHARACTERISTIC TWO	
1.	Introduction	151
2.	Multiples of rigid spaces	152
3.	The relation $ \circ $ on the forms of countable dimension	155
4.	Weakly stable spaces	157
5.	Fitting together stable and rigid spaces	160
6.	The classification of weakly stable spaces	162
7.	Representatives	166
8.	Suitable fields for weak stability	166
	References	168
	VIII. SUBSPACES IN NON - TRACE - VALUED SPACES	
1.	Introduction	169
2.	The lattice of a totally isotropic subspace (dim S/T < ∞)	170
3.	Remarks on the verification of diagrams	172
4.	Totally isotropic subspaces: the indices	174
5.	Totally isotropic subspaces: the irreducible objects	177
6.	The invariants of a totally isotropic subspace	181
7.	The decomposition theorem	185
8.	On closed totally isotropic subspaces	191
9.	The case of Witt decompositions reviewed	195
10.	Remarks on related results (Principle II)	197

201

References

IX. INVOLUTIONS IN HERMITEAN SPACES IN CHARACTERISTIC TWO

202

259

261

262

265

267

1. Introduction

5. Two Hasse Principles

7. Canonical representatives for quasistable forms

Fields over which all \aleph_0 -forms are quasistable

6. The classification

References

8.

2.	The form derived from an involution	203
3.	Orthogonal similarity	204
4.	A special case	204
5.	A lattice material to the solution of the general problem	207
6.	Remarks on the lattice	211
7.	The classification problem	214
8.	Remarks on the proof of the classification problem	216
9.	On the classification of nilpotent self-adjoint transformations	220
10.	Canonical representatives	222
	References	224
	X. EXTENSION OF ISOMETRIES	
0.	Introduction	225
1.	Recall of dual pairs (algebraic formulation)	226
2.	Topological setting	229
3.	Mackey's theorem on modular pairs	231
4.	Isometries between dense subspaces	234
5.	Isometries between closed subspaces	236
6.	Isometries between arbitrary subspaces	239
7.	The results of Chapter VI as an inference from Theorem 5	
	in Section 5	243
8.	Transgression into the uncountable: an application of the	
	log frame	245
9.	On the extension of algebraic isometries	248
	References	252
	XI. CLASSIFICATION OF FORMS OVER ORDERED FIELDS	
1.	Introduction	253
2.	Weakly isotropic forms	255
3.	Examples of fields in connection with properties (1) and (2)	257
4.	A remark on Hilbert ordered skew-fields	258

XII. CLASSIFICATION OF SUBSPACES IN SPACES WITH DEFINITE FORMS 0. Introduction 269 Standard bases for 1-dense subspaces and their matrices 1. 270 2. The matrix of a 1-dense subspace with standard basis 273 The ψ -invariant of a 1-dense subspace 3. 276 4. The Main Theorem on 1 - dense subspaces and the plan of its proof 278 5. Proof of the Main Theorem: the first lemma 279 6. Proof of the Main Theorem: the second lemma 282 7. End of the proof of the Main Theorem: the third lemma 287 8. An important special case: 1 - dense hyperplanes 293 Appendix I. An interpretation of the invariant ψ in Sec. 3 295 Appendix II. The proof of a theorem in Section 2 299 9. Standard bases for arbitrary subspaces (Definitions and existence) 304 10. The matrices associated with a standard basis 306 11. The Main Theorem on arbitrary subspaces (Statement) 309 12. The proof 312 13. Embeddings that split 314 14. Conditions for 1-dense embeddings to split 316 15. Conditions for 1 - closed embeddings to split 318 16. Parseval embeddings 320 References 327 XIII. CLASSIFICATION OF 1 - DENSE SUBSPACES WITH DEFINITE FORMS 1. Introduction 328 2. Digression on Lagrange's identity 330 The example "dim E/V = 2". The invariant { Ω_{ij} } 3. 333 A change of the basis in V does not affect the Ω_{ij} 4. 335 Transformation formula for D_n 5. 338 Transformation law for the quantities Ω_{ij} 6. 340 7. The main theorem (dim E/V = 2; $D_n \rightarrow \infty$) 340 8. Embeddings (dim E/V = 2; $D_n \rightarrow \infty$) that split 343

An application to dense embeddings when $k = \mathbb{R}$

11. Applications to the theory of divergent series

tean spaces over R, C or H

10. Counting orbits of 1 - dense subspaces in arbitrary hermi-

345

351

352

353

9.

References

XII

XIV. QUADRATIC FORMS

0.	Introduction	354
1.	Symmetrization	356
2.	The process of squaring	357
З.	The concept of quadratic form	358
4.	Isometries between quadratic spaces	361
5.	A remark on forms in characteristic two	366
	References	368
	Appendix I. The dimension of S/T and a theorem on division	
	algebras in characteristic 2	370
	XV. WITTS THEOREM IN FINITE DIMENSIONS	
1.	Introduction	375
2.	Witt's Theorem for finite dimensional quadratic forms and	
	for trace - valued sesquilinear forms	376
3.	A Witt type theorem for finite dimensional non-trace-va-	
	lued sesquilinear forms	380
	References	385
	XVI. ARFS THEOREM IN DIMENSION κ_0	
1.	Introduction	387
2.	Glauser's lattice	388
3.	Invariants of a subspace	391
4.	Characterization of the orbit of a subspace (Theorem 2)	393
5.	Proof of Theorem 2: Construction of the initial triple	
	$(\tilde{\tau}_{0}^{\prime}, W_{0}, \overline{W}_{0}^{\prime})$	396
6.	Proof of Theorem 2: The general step in Case I	398
7.	Proof of Theorem 2: Case II	401
8.	The irreducible objects	404
	References	406
	Appendix I. Quaternions in characteristic 2 and a remark	
	on the Arf invariant à la Tits	407
	Symbols and Notations	414
	Index of Names	415
	Index	417