Contents

Pre	face	vii
CHAPTER 1 General Topology		1
1.1.	Ordered Sets	1
	The axiom of choice, Zorn's lemma, and Cantors's well-ordering principle; and their equivalence. Exercises.	
1.2.	Topology	8
	Open and closed sets. Interior points and boundary. Basis and subbasis for a topology. Countability axioms. Exercises.	
1.3.	Convergence	13
	Nets and subnets. Convergence of nets. Accumulation points. Universal nets. Exercises.	
1.4.	Continuity	17
	Continuous functions. Open maps and homeomorphisms. Initial topology. Product topology. Final topology. Quotient topology. Exercises.	
1.5.	Separation	23
	Hausdorff spaces. Normal spaces. Urysohn's lemma. Tietze's extension theorem. Semicontinuity. Exercises.	
1.6.	Compactness	30
	Equivalent conditions for compactness. Normality of compact Hausdorff spaces. Images of compact sets. Tychonoff's theorem. Compact subsets of R ⁿ . The Tychonoff cube and metrization. Exercises.	

1.7.	Local Compactness	36
	One-point compactification. Continuous functions vanishing at infinity. Normality of locally compact, σ -compact spaces. Paracompactness. Partition of unity. Exercises.	
	APTER 2 nach Spaces	43
2.1.	Normed Spaces	43
	Normed spaces. Bounded operators. Quotient norm. Finite-dimensional spaces. Completion. Examples. Sum and product of normed spaces. Exercises.	
2.2.	Category	52
	The Baire category theorem. The open mapping theorem. The closed graph theorem. The principle of uniform boundedness. Exercises.	
2.3.	Dual Spaces	56
	The Hahn-Banach extension theorem. Spaces in duality. Adjoint operator. Exercises.	
2.4.	Weak Topologies	62
	Weak topology induced by seminorms. Weakly continuous functionals. The Hahn-Banach separation theorem. The weak* topology. w*-closed subspaces and their duality theory. Exercises.	
2.5.	w*-Compactness	69
	Alaoglu's theorem. Krein-Milman's theorem. Examples of extremal sets. Extremal probability measures. Krein-Smulian's theorem. Vector-valued integration. Exercises.	
	APTER 3 Ubert Spaces	79
3.1.	Inner Products	79
	Sesquilinear forms and inner products. Polarization identities and the Cauchy-Schwarz inequality. Parallellogram law. Orthogonal sum. Orthogonal complement. Conjugate self-duality of Hilbert spaces. Weak topology. Orthonormal basis. Orthonormalization. Isomorphism of Hilbert spaces. Exercises.	
3.2.	Operators on Hilbert Space	88
	The correspondence between sesquilinear forms and operators. Adjoint operator and involution in $\mathbf{B}(\mathfrak{H})$. Invertibility, normality, and positivity in $\mathbf{B}(\mathfrak{H})$. The square root. Projections and diagonalizable operators. Unitary operators and partial isometries. Polar decomposition. The Russo-Dye-Gardner theorem. Numerical radius. Exercises.	
3.3.	. Compact Operators	105
	Equivalent characterizations of compact operators. The spectral theorem for normal, compact operators. Atkinson's theorem. Fredholm operators and index. Invariance properties of the index. Exercises.	

Contents	xiii
3.4. The Trace Definition and invariance properties of the trace. The trace class operators and the Hilbert-Schmidt operators. The dualities between $B_0(\mathfrak{H})$, $B^1(\mathfrak{H})$ and $B(\mathfrak{H})$. Fredholm equations. The Sturm-Liouville problem. Exercises.	115
CHAPTER 4 Spectral Theory	
4.1. Banach Algebras Ideals and quotients. Unit and approximate units. Invertible elements. C. Neumann's series. Spectrum and spectral radius. The spectral radius formula. Mazur's theorem. Exercises.	128
4.2. The Gelfand Transform Characters and maximal ideals. The Gelfand transform. Examples, including Fourier transforms. Exercises.	137
4.3. Function Algebras The Stone-Weierstrass theorem. Involution in Banach algebras. C*-algebras. The characterization of commutative C*-algebras. Stone-Čech compactification of Tychonoff spaces. Exercises.	144
4.4. The Spectral Theorem, I Spectral theory with continuous function calculus. Spectrum versus eigenvalues. Square root of a positive operator. The absolute value of an operator. Positive and negative parts of a self-adjoint operator. Fuglede's theorem. Regular equivalence of normal operators. Exercises.	156
4.5. The Spectral Theorem, II Spectral theory with Borel function calculus. Spectral measures. Spectral projections and eigenvalues. Exercises.	162
4.6. Operator Algebra Strong and weak topology on B(5). Characterization of strongly/weakly continuous functionals. The double commutant theorem. Von Neumann algebras. The σ-weak topology. The σ-weakly continuous functionals. The predual of a von Neumann algebra. Exercises.	171
4.7. Maximal Commutative Algebras The condition $\mathfrak{A} = \mathfrak{A}'$. Cyclic and separating vectors. $\mathscr{L}^{\infty}(X)$ as multiplication operators. A measure-theoretic model for MAÇA's. Multiplicity-free operators. MAÇA's as a generalization of orthonormal bases. The spectral theorem revisited. Exercises.	180
CHAPTER 5 Unbounded Operators	191
5.1. Domains, Extensions, and Graphs Densely defined operators. The adjoint operators. Symmetric and self-adjoint operators. The operator T^*T . Semibounded operators. The Friedrichs extension. Examples.	192

kiv	Contents

5.2.	The Cayley Transform	203
	The Cayley transform of a symmetric operator. The inverse transformation. Defect indices. Affiliated operators. Spectrum of unbounded operators.	
5.3.	Unlimited Spectral Theory	209
	Normal operators affiliated with a MAÇA. The multiplicity-free case. The spectral theorem for an unbounded, self-adjoint operator. Stone's theorem. The polar decomposition.	
Сн	apter 6	221
Inte	egration Theory	
6.1.	Radon Integrals	221
	Upper and lower integral. Daniell's extension theorem. The vector lattice $\mathcal{L}^1(X)$. Lebesgue's theorems on monotone and dominated convergence. Stieltjes integrals.	
6.2.	Measurability	228
	Sequentially complete function classes. σ -rings and σ -algebras. Borel sets and functions. Measurable sets and functions. Integrability of measurable functions.	
6.3.	Measures	235
	Radon measures. Inner and outer regularity. The Riesz representation theorem. Essential integral. The σ -compact case. Extended integrability.	
6.4.	L^p -spaces	239
	Null functions and the almost everywhere terminology. The Hölder and Minkowski inequalities. Egoroff's theorem. Lusin's theorem. The Riesz-Fischer theorem. Approximation by continuous functions. Complex spaces. Interpolation between \mathcal{L}^p -spaces.	
6.5.	Duality Theory	247
	σ -compactness and σ -finiteness. Absolute continuity. The Radon-Nikodym theorem. Radon charges. Total variation. The Jordan decomposition. The duality between L^{ρ} -spaces.	
6.6.	Product Integrals	255
	Product integral. Fubini's theorem. Tonelli's theorem. Locally compact groups. Uniqueness of the Haar integral. The modular function. The convolution algebras $L^1(G)$ and $M(G)$.	
D:L	slicaranhy	267
	Bibliography List of Symbols	
	Index	