Contents

Preface

Notation and Terminology	ΧV
CHAPTER I	
Two-Dimensional Manifolds	1
§1. Introduction	1
§2. Definition and Examples of <i>n</i> -Manifolds	2
§3. Orientable vs. Nonorientable Manifolds	3
§4. Examples of Compact, Connected 2-Manifolds	5
§5. Statement of the Classification Theorem for Compact Surfaces	9
§6. Triangulations of Compact Surfaces	14
§7. Proof of Theorem 5.1	16
§8. The Euler Characteristic of a Surface	26
References	34
CHAPTER II	
The Fundamental Group	35
§1. Introduction	35
§2. Basic Notation and Terminology	36
§3. Definition of the Fundamental Group of a Space	38
§4. The Effect of a Continuous Mapping on the Fundamental Group	42
§5. The Fundamental Group of a Circle Is Infinite Cyclic	47

x	Contents

§6.	Application: The Brouwer Fixed-Point Theorem in Dimension 2	50
	The Fundamental Group of a Product Space	52
§8.	Homotopy Type and Homotopy Equivalence of Spaces	54
	References	59
CH	APTER III	
Fre	ee Groups and Free Products of Groups	60
	Introduction	60
§2.	The Weak Product of Abelian Groups	60
§3.	Free Abelian Groups	63
§4 .	Free Products of Groups	71
	Free Groups	75 7 5
	The Presentation of Groups by Generators and Relations	78
§7.	Universal Mapping Problems	81
	References	85
СН	APTER IV	
Sei	ifert and Van Kampen Theorem on the Fundamental Group	
	the Union of Two Spaces. Applications	86
§ 1.	Introduction	86
	Statement and Proof of the Theorem of Seifert and Van Kampen	87
	First Application of Theorem 2.1	91
	Second Application of Theorem 2.1	95
§5.	Structure of the Fundamental Group of a Compact Surface	96
§6.	Application to Knot Theory	103
§7.	Proof of Lemma 2.4	108
	References	116
CH	HAPTER V	
Co	overing Spaces	117
8	1. Introduction	117
	2. Definition and Some Examples of Covering Spaces	117
	3. Lifting of Paths to a Covering Space	123
	4. The Fundamental Group of a Covering Space	126
	5. Lifting of Arbitrary Maps to a Covering Space	127
	6. Homomorphisms and Automorphisms of Covering Spaces	130

 §7. The Action of the Group π(X, x) on the Set p⁻¹(x) §8. Regular Covering Spaces and Quotient Spaces §9. Application: The Borsuk-Ulam Theorem for the 2-Sphere §10. The Existence Theorem for Covering Spaces References 	133 135 138 140 146
CHAPTER VI	
Background and Motivation for Homology Theory	147
§1. Introduction	147
§2. Summary of Some of the Basic Properties of Homology Theory §3. Some Examples of Problems which Motivated the Development	147
of Homology Theory in the Nineteenth Century	149
References	157
CHAPTER VII	
Definitions and Basic Properties of Homology Theory	158
§1. Introduction	158
§2. Definition of Cubical Singular Homology Groups	158
§3. The Homomorphism Induced by a Continuous Map	163
§4. The Homotopy Property of the Induced Homomorphisms	166
§5. The Exact Homology Sequence of a Pair	169
§6. The Main Properties of Relative Homology Groups	173
§7. The Subdivision of Singular Cubes and the Proof of Theorem 6.4	178
CHAPTER VIII	
Determination of the Homology Groups of Certain Spaces: Applications and Further Properties of Homology Theory	186
§1. Introduction	186
§2. Homology Groups of Cells and Spheres—Applications	192
§3. Homology of Finite Graphs	201 206
§4. Homology of Compact Surfaces	200
§5. The Mayer-Victoris Exact Sequence	207
§6. The Jordan-Brouwer Separation Theorem and Invariance of Domain	211
§7. The Relation between the Fundamental Group and	211
the First Homology Group	217
References	224
Releiches	

xii Contents

CHAPTER IX	
Homology of CW-Complexes	225
§1. Introduction	225
§2. Adjoining Cells to a Space	225
§3. CW-Complexes	228
§4. The Homology Groups of a CW-Complex	232
§5. Incidence Numbers and Orientations of Cells	238
§6. Regular CW-Complexes	243
§7. Determination of Incidence Numbers for	
a Regular Cell Complex	244
§8. Homology Groups of a Pseudomanifold	249
References	253
CHAPTER X	
Homology with Arbitrary Coefficient Groups	254
§1. Introduction	254
§2. Chain Complexes	254
§3. Definition and Basic Properties of Homology with	2/2
Arbitrary Coefficients	262
§4. Intuitive Geometric Picture of a Cycle with Coefficients in G	266
§5. Coefficient Homomorphisms and Coefficient Exact Sequences	267
§6. The Universal Coefficient Theorem	269
§7. Further Properties of Homology with Arbitrary Coefficients	274
References	278
CHAPTER XI	
The Homology of Product Spaces	279
§1. Introduction	279
§2. The Product of CW-Complexes and the Tensor Product of	
Chain Complexes	280
§3. The Singular Chain Complex of a Product Space	282
§4. The Homology of the Tensor Product of Chain Complexes	
(The Künneth Theorem)	284
§5. Proof of the Eilenberg-Zilber Theorem	286
§6. Formulas for the Homology Groups of Product Spaces	300
References	303

Contents	xiii
CHAPTER XII	
Cohomology Theory	305
§1. Introduction	305
§2. Definition of Cohomology Groups—Proofs of	306
the Basic Properties §3. Coefficient Homomorphisms and the Bockstein Operator	300
in Cohomology	309
§4. The Universal Coefficient Theorem for Cohomology Groups	310
§5. Geometric Interpretation of Cochains, Cocycles, etc.	316
§6. Proof of the Excision Property; the Mayer-Vietoris Sequence	319 322
References	322
CHAPTER XIII	
Products in Homology and Cohomology	323
§1. Introduction	323
§2. The Inner Product	324
§3. An Overall View of the Various Products	324
§4. Extension of the Definition of the Various Products to	220
Relative Homology and Cohomology Groups	329
§5. Associativity, Commutativity, and Existence of a Unit of the Various Products	333
§6. Digression: The Exact Sequence of a Triple or a Triad	336
§7. Behavior of Products with Respect to the Boundary and	
Coboundary Operator of a Pair	338
§8. Relations Involving the Inner Product	341
§9. Cup and Cap Products in a Product Space	342
§10. Remarks on the Coefficients for the Various Products—	2.42
The Cohomology Ring	343
§11. The Cohomology of Product Spaces (The Künneth Theorem	344
for Cohomology) References	349
References	317
CHAPTER XIV	
Duality Theorems for the Homology of Manifolds	350
§1. Introduction	350
§2. Orientability and the Existence of Orientations for Manifolds	351
§3. Cohomology with Compact Supports	358
§4. Statement and Proof of the Poincaré Duality Theorem	360

xiv Contents

§5.	Applications of the Poincaré Duality Theorem to Compact Manifolds	365
§6.	The Alexander Duality Theorem	370
	Duality Theorems for Manifolds with Boundary	375
	Appendix: Proof of Two Lemmas about Cap Products	380
·	References	393
СН	APTER XV	
Cu	p Products in Projective Spaces and Applications of Cup Products	394
•	Introduction	394
~	The Projective Spaces	394
-	The Mapping Cylinder and Mapping Cone	399
§4.	The Hopf Invariant	402
	References	406
AP	PENDIX A	
A I	Proof of De Rham's Theorem	407
	Introduction	407
	Differentiable Singular Chains	408
§3.	Statement and Proof of De Rham's Theorem	411
	References	417
AP	PENDIX B	
Per	rmutation Groups or Transformation Groups	419
§1.	Basic Definitions	419
§2.	Homogeneous G-spaces	421
Inc	dex	424