Contents at a Glance

1	Introduction	
2	Nature of the Security Investment Domain	
3	Modern Approaches to Portfolio Selection	23
4	Artificial Intelligence in Investment Management:	
	An Overview	45
5	Portfolio-Selection System Issues	67
6	Knowledge Representation and Inference	81
7	Handling Investment Uncertainties	101
8	Knowledge Acquisition, Integration, and	
	Maintenance	119
9	Machine Learning	131
10	Neural Networks	159
11	Integrating Knowledge with Portfolio Optimization	183
12	Integrating Knowledge with Databases	197
13	An Illustrative Session with K-FOLIO	209
14	Concluding Remarks	229
Nan	ne Index	233
Sub	ject Index	237

Table of Contents

List	of Figu	res	X
List	of Tabl	es	xi
Prefa	ace		xx
Chap	oter 1	Introduction	1
1.1	Artifi	icial Intelligence and Investing	1
1.2	The (Organization of This Book	3
Chap	oter 2	Nature of the Security Investment Domain	7
2.1	Chara	acteristics of Investment Assets	8
2.2		ries of Stock Price Determination	9
	2.2.1	Random, Ordered, and Complex Systems	10
	2.2.2	Value-Based Investing	10
	2.2.3		11
	2.2.4		12
2.3	Risk I	ssues	14
	2.3.1	What Is Risk?	14
	2.3.2	Cognitive Error and Stochastic Risk Modeling	14
2.4	Marke	et Psychology and Noise	15
2.5		tional Trading and Market Behavior	15
	2.5.1	Agency and Database Commonality Effects	15
	2.5.2	Trading Dynamics and Instability	16
2.6	The E	xploitation of Anomalies	17
	2.6.1	The Cost and Value of Information	17
	2.6.2	Implied Probability Distributions	17

x Table of Contents

2.7 Endr Refe		Decision Rules and Black Box Investing clusions	19 20 20 21
Chap	oter 3	Modern Approaches to Portfolio Selection	23
3.1	Intro	duction	23
3.2	Goal	Programming	25
3.3		n-Variance Optimization	27
	3.3.1	The Markowitz Model	27
	3.3.2		29
	3.3.3		30
3.4	Beta	and Index Models	31
3.5	Secu	rity Risk and Portfolio Risk	35
3.6	The I	Role of Riskless Assets	36
3.7	Mear	Absolute Deviation Optimization	37
3.8		owitz and Capital-Asset Pricing Model Limitations	38
3.9	CAP	M Extensions and Program Trading	40
Endr	otes		41
Refe	rences		43
Chap	ter 4	Artificial Intelligence in Investment Management:	
		An Overview	45
4.1	Knov	vledge-Based Systems, Auto-Learning Systems,	
	and I	ntelligent Systems	45
4.2	Intro	duction to Knowledge Representation	46
4.3	Expe	rt Systems and Financial Services	51
4.4	An E	arly ES for Portfolio Selection	52
4.5	Conte	emporary Systems	53
4.6	Emer	ging Artificial Intelligence Technologies	57
4.7		lusions	61
Endn			62
Refe	rences		62
Chap	ter 5	Portfolio-Selection System Issues	67
5.1	Expe	rt System Components	67

5.2	Rule-	Based Systems	70
	5.2.1	Representation in Rule-Based Systems	70
	5.2.2	Inference Strategies	71
5.3	Frame	e-Based Systems	73
5.4		ment Support Features	75
	5.4.1	Knowledge Representation	75
	5.4.2	Inference and Explanation	77
	5.4.3	Knowledge Acquisition and Maintenance	78
	5.4.4	System Architecture	79
Refe	erences		79
Chaj	pter 6	Knowledge Representation and Inference	81
6.1	Introd	uction	82
6.2	The R	ule Base	82
	6.2.1	Syntax of Rules	82
	6.2.2	Example Rules	82
6.3	The Da	atabase	84
	6.3.1	Relational Database Examples	84
	6.3.2	Inheritance, Average-up, and Sum-up	85
	6.3.3	Working Memory	87
6.4	Securit	ty Inference	89
	6.4.1	Conflict-Set Generation	90
	6.4.2	Composite-Grade Generation	90
	6.4.3	Explanation Synthesis	93
5.5	Dialog	ues	93
	6.5.1	Company-Based Dialogue	95
	6.5.2	Industry-Based Dialogue	96
	6.5.3	Criteria-Based Dialogue	97
	6.5.4	Grade-Based Dialogue	98
5.6	Conclu	sions	98
Refer	ences		99
Chap	ter 7	Handling Investment Uncertainties	101
'.1	Introdu	ction	102
'.2	The Ba	yesian Approach	102
	7.2.1	Definitions and Formulas	102
	7.2.2	An Illustrative Example	104

xii Table of Contents

	7.2.3	Handling Uncertain Evidence	106
	7.2.4	Handling More Than Two Levels of Hypotheses	108
7.3		nce Strategy in the Bayesian Approach	108
	7.3.1	The Sequence of Applying Evidence	109
	7.3.2	Stopping Rules	110
	7.3.3	Discussion	111
7.4		ertainty Factor Approach	111
7.5		uzzy Logic Approach	112
	7.5.1	Possibility Theory	112
	7.5.2	Fuzzy Logic	112
	7.5.3	A Fuzzy Logic-Based Expert System	113
	7.5.4	A Compensatory Fuzzy-Logic Approach	114
	7.5.5	Attenuation by the Credibility of Rules	115
	7.5.6	Discussion	115
7.6		onotonic Reasoning	116
7.7	Concl	•	116
	rences		116
Chap	oter 8	Knowledge Acquisition, Integration, and	
•		Maintenance	119
8.1		luction	119
8.2		epresentation and Integration of Investor Preferences	120
	8.2.1	The Organization of Investor Preference Bases	120
	8.2.2	The Representation of Investor Preferences	120
	8.2.3	The Integration and Interpretation of Preferences	123
8.3		es for Knowledge Acquisition	124
8.4	Know	ledge Structure and Maintenance	125
	8.4.1	Structuring Knowledge	125
	8.4.2	Maintenance Aids	127
8.5	The S	Selective Integration of Relevant Knowledge	128
8.6		lusions	130
Refe	erences		130
Cha	pter 9	Machine Learning	131
9.1	Intro	duction	131
	9.1.1	Why Machine Learning?	131
	9.1.2		132
	9.1.3	Learning Strategies	133

	9.2	Implied Distribution Surrogates	133
	9.3	Inductive Learning	134
		9.3.1 ID3	135
		9.3.2 The Concept-Learning Algorithm	135
		9.3.3 Application of Inductive Learning to Investment Decisions	139
		9.3.4 The Potential of Inductive Learning in Investment	139
	9.4	Syntactic Pattern–Based Learning	143
	∕. ⊤	9.4.1 The SYNPLE Framework	144
		9.4.2 Performance	149
	9.5	Genetic Adaptive Algorithms	152
)	7.5	9.5.1 The Genetic Algorithm Approach to Learning	152
		9.5.2 Problem Representation Issues	153
		9.5.3 A Genetic Algorithm for Trading Rule Generation	154
	9.6	Conclusions	156
	Refer		156
	Chapt	ter 10 Neural Networks	159
	10.1	Introduction	159
	10.2	Architecture of Neural Networks	160
	10.3	Learning in Neural Networks	162
	10.4	Strengths and Weaknesses	164
	10.5	Neural Network Applications	166
		10.5.1. Neural Networks for Stock Price Prediction	167
		10.5.2 Other Neural Network Applications	170
	10.6	Example of Integrating Neural Networks and Rules	173
	10.7	Conclusions	177
	Refer	ences	178
	Chapt	ter 11 Integrating Knowledge with Portfolio Optimization	183
	11.1	Introduction	183
λ	11.2	An Unenhanced Markowitz Model Example	184
	11.3	The Interpretation of Knowledge	185
X	11.4	Quadratic Programming with Prioritized Decision Variables	188
	11.5	Performance Evaluation	192
	11.6	Conclusions	194
	Refer	ences	195

Table of Contents

xiii

xiv Table of Contents

Chapt	ter 12 Integrating Knowledge with Databases	197
12.1	Introduction	198
12.2	Database Evolution	198
	12.2.1 Relational Databases	198
	12.2.2 The Advent of Knowledge Bases	199
	12.2.3 Object-Oriented Databases	200
12.3	The Management of Financial Data	201
	12.3.1 The Organization of Financial Data	201
	12.3.2 The Use of Financial Data	204
12.4	The Management of Price and Trading Volume Data	204
	12.4.1 The Organization of Price and Volume Data	204
	12.4.2 The Uses of Price and Volume Data	205
12.5	Management of the Function Base	205
	12.5.1 Functions	205
	12.5.2 Reserved Words	206
12.6	Conclusions	207
Refer	rences	207
Chap	ter 13 An Illustrative Session with K-FOLIO	209
13.1	Introduction	209
13.2	Selecting Investment Characteristics, Environmental	
	Assumptions, and Knowledge Sources	210
13.3	Individual Stock Evaluation	212
13.4	Industry Evaluation	212
13.5	Criteria-Based Dialogue	213
13.6	Grade-Based Listing	214
13.7	Portfolio Selection	215
13.8	Conclusions	217
Refe	rences	227
Chap	oter 14 Concluding Remarks	229
14.1	System Design Criteria: A Summary	229
14.2	Directions for Future Research	231
Nam	e Index	233
Subj	ect Index	237

List of Figures

3.1	Efficient Risk-Return Frontier	29
3.2	Efficient Frontier and Capital Market Line	36
3.3	Ex Ante and Ex Post Frontiers	39
3.4	Capital Market Surface and CML	41
4.1	Auto-Learning Expert System	47
4.2	Partitioning of ES Output Set (with outputs A, B, C, D)	50
4.3	Interconnected Biological Neurons	58
5.1	Typical Expert System Architecture	68
5.2	Rule Examples	71
5.3	An Illustrative AND/OR Digraph	72
5.4	Structure of Frame-Based Representation	74
5.5	Hierarchical Structure of Frames	75
5.6	Architecture of K-FOLIO	80
6.1	Knowledge Management Subsystem	83
6.2	Overall Syntax of Rules	84
6.3	Example Rules	85
6.4	Company-Based Relational Database	86
6.5	Industry-Based Relational Database	86
6.6	Inheritance, Average-up, and Sum-up	88
6.7	Generated Working Memory in the Matching Process	89
6.8	Rules in Conflict Set of Company ABC	90
6.9	Process of Explanation Synthesis	94
6.10	Example of the WHY Statement	95

List of Figures

xvi

6.11	Example of Company-Based Dialogue	96
6.12	Relationships between Questions and Rules	98
7.1	Interpolation Method	107
7.2	An Example of Interpolation	107
7.2	An Example of file polation	100
8.1	Organization of Expert Knowledge Base and Investor Preference Bases	121
8.2	Integrating Expert Knowledge and Investor Preference	123
8.3	Mixed-Knowledge Acquisition Strategy	125
8.4	Hierarchical Knowledge-Structuring by Subject	125
8.5	Extended Syntax of Rules that Include Meta-Knowledge	128
0.5	Extended Syntax of Rules that include Meta-Knowledge	120
9.1	Machine-Learning Procedure	132
9.2	ID3 Algorithm	136
9.3	Inductive Learning Procedure	137
9.4	Inductively Generated Rules	142
9.5	Illustrative Stock Price Trend Lines	145
9.6	Illustrative Moving-Average Stock Price Curves	145
9.7	Illustrative Moving-Average Trading Volume Curves	146
9.8	Illustrative Price-Volume Correlation Curve	146
9.9	Sensitivity of Duration in Lower Support Line to	
	Stock Price Trend Line	149
9.10	Mean Price Change by the Rules Generated from the	
	First Data Set	150
9.11	Genetic Adaptive Algorithm	153
9.12	Genetic Crossover Operation	154
10.1	A Neural Processing Element	160
10.2	Typical Neural Network Architecture	161
10.3	Architecture of a Recurrent Neural Network	162
10.4	Four-Layered Network	167
10.5	Candlestick Chart and Triangle Pattern	168
10.6	Performance of the Prediction System	169
10.7	Typical Net2 Decision Map	177
10.8	Typical Neural Network Composite Rule Set Decision Map	178
10.9	S&P 500 Index versus Composite 2 System Performance	179
11.1	Integration of Knowledge and Preference Systems	
	with the Quadratic-Programming Model	186
11.2	Realized Returns; 12% Target	194

	List of Figures	xvii
11.3	Realized Returns; 18% Target	195
12.1	Example of Relational Format	199
12.2	Illustrative Facts and Rules in Prolog	200
12.3	Object-Oriented Database	202
12.4	Relational Database	203
13.1	Selection of Investment Characteristics	210
13.2	Selection of Assumptions	211
13.3	Selection of Knowledge Bases	212
13.4	Dialogue Menu	213
13.5	Selection of Individual Stocks	214
13.6	Grade and Reasons for Individual Stock	215
13.7	On-Screen Edit	216
13.8	Modified Screen after Revision	217
13.9	Selection of Industry	218
13.10	Grade and Reason for an Industry	219
13.11	Selection of Criteria	220
13.12	Numeric-Type Criteria Specification	221
13.13	Value-Type Criteria Specification	222
13.14	Output from Criteria-Based Dialogue	223
13.15	Grade-Based List	224
13.16	Input of Investment Amount and Expected Return Target	225
13.17	Selection of Knowledge Application Strategy	225
13.18	Trial Portfolio	226
13.19	Elimination of Unfavorable Stocks	227

List of Tables

5.1	Relationship between Expert Systems and Artificial Intelligence	69
6.1	Grades and Corresponding Real Numbers	91
9.1	Potential Cues	140
9.2	Variables Used for Classification	143
9.3	Comparison of Annual Returns in Each Holding Period (%)	144
9.4	Illustrative Elements Specified by Charts, Attributes,	
<i>,</i> ,,	and Values	148
9.5	Performance of Generated Rules	151
10.1	Performance of Individual Networks	174
10.2	Rules for Combining Outputs of Networks	175
10.3	Performance of Rules 1–7	176
11.1	Monthly Market Returns	192
11.2	Realized Returns of Markowitz Portfolios	193
11.2	Realized Returns of K-FOLIO Portfolios	193