CONTENTS

Pre	eface		v
Co	ntents		IX
Int	roduct	ion	1
PA	RT A	COMBINATORS AND TRUTH	11
I	Intr	oducing operations	13
	1.	The basic language	14
	2.	Operations I: general facts	15
	3.	Operations II: elementary recursion theory	18
	4A.	The Church-Rosser theorem	22
	4B.	Term models	26
	5.	The graph model	28
	6.	An effective version of the extensional model D_{∞}	34
		Appendix	39
II	Extending operations with reflective truth		43
	7.	Extending combinatory algebras with truth	45
	8.	The theory of operations and reflective truth:	
		simple consequences	51
	9A.	Type-free abstraction, predicates and classes	55
	9B.	Operations on predicates and classes	59
	10A.	The fixed point theorem for predicates	63
	10B.	Applications to semantics and recursion theory	68
	11.	Non-extensionality	73
		Appendix I: a property theoretic definition of the	
		fixed point operator for predicates	76
		Appendix II: on the explicit abstraction theorem	77
		Appendix III: independence of truth predicates	
		from the encoding of logical operators	80

X Contents

PAI	RT B:	TRUTH AND RECURSION THEORY	83
III	Indu	active models and definability theory	85
	12.	Inductive models and the induction theorem	86
	13.	The envelope of an inductive model	88
	14.	The uniform ordinal comparison theorem for inductive	
		models	91
	15.	Applications of the uniform ordinal comparison theorem	97
IV	Type-free abstraction with approximation operator		
	16.	Approximating properties by classes	104
	17.	The approximation theorem for extensional operations	
		and the fixed point theorem for monotone operations	109
	18.	Topology displayed: basic definitions	113
	19.	The representation theorem for explicitly	
		CL-continuous operators	117
		Appendix: alternative proofs	122
v	Тур	e-free abstraction, choice and sets	125
	20.	Choice principles and the distinction between operations	
		and functions	126
	21.	Admissible hulls: elementary facts	131
	22.	A model of admissible set theory	137
	23.	The boundedness theorem	144
PA	RT C:	SELECTED TOPICS	149
VI	Leve	els of implication and intensional logical equivalence	151
	24.	Myhill's levels of implication	152
	25.	Formal deducibility based on levels of implication	
		and its proof-theoretic strength	158
	26.	Introducing an intensional equivalence relation	162
	27.	The infinitary reduction relation ⇒	165
	28.	The Church-Rosser theorem for ⇒	169
	29.	A model of type-free logic based on intensional	
		equivalence	174
VII	I On the global structure of models for reflective truth		
	30.	The lattice of fixed point models for the neutral	
		minimal theory	179
	31.	The sublattice of intrinsic fixed point models	
		and the cardinality theorem	186

_		
Con	ten	ts

			244
	32.	Variations on the encoding technique: non-modularity	
		and other oddities	192
	33.	A model for an impredicative extension of reflective truth	198
	34.	On Kripke's classification of self-referential sentences	203
	35.	On the consistency of coinduction principles	207
		Appendix: a variant to the basic operator Γ	
		and the restriction axiom	209
PA	RT D	LEVELS OF TRUTH AND PROOF THEORY	213
VII	I Leve	els of reflective truth	215
	36.	A language and axioms for reflective truth with levels	218
	37.	Simple consequences	220
	38.	Universes and the Weyl extended iteration principle	$\frac{225}{225}$
	39.	A recursion-theoretic model	230
	40.	Levels of truth and predicatively reducible subsystems	200
		of second-order arithmetic	238
	41.	Consistency of a reducibility principle for classes	244
	42.	Levels of truth and impredicative subsystems of	
		second-order arithmetic	248
		Appendix: on projectibility and stronger reflection	253
IX	Leve	els of truth and predicative well-orderings	257
	43.	On well-orderings	258
	44.	Ramified hierarchies	261
	45 .	Predicative well-orderings I	269
	46.	Predicative well-orderings II	277
X	Redu	icing reflective truth with levels to finitely iterated	
		ctive truth	285
	47.	A sequent calculus STLR for a theory of reflective	
		truth with levels	286
	48.	Basic properties of STLR	291
	49A.	Elimination of the full level induction schema	293
		Elimination of unbounded level quantifiers	297
	50.	The infinitary sequent calculus IT_n^{∞} of <i>n</i> -iterated	
		reflective truth	303
	51.	Embedding STLR _n into IT_n^{∞}	305
ΧI	Proo	f-theoretic investigation of finitely iterated reflective truth	311
	52.	The ramified system RS_n	312
	53.	Cut elimination	316

320

54. Some derivable sequents of RS_n

XII

	55.	Embedding IT_n^{∞} into RS_n	324
	56.	The upper bound theorem for IT_n^{∞}	327
	57.	Upper bound theorems for TLR and its subsystems	329
	58.	Conclusion: the conservation theorems	335
		Appendix: primitive recursive cut elimination for ${\operatorname{RS}}_n$	338
PAR	T E:	ALTERNATIVE VIEWS	349
XII	Non-	reductive systems for type-free abstraction and truth	351
	59.	The core system VF and transfinite induction	352
	60.	Supervaluation models of VF	357
	61.	An abstract sequent calculus and truth	358
	62.	Cut elimination and related properties	364
	63. 64.	A provability interpretation and the upper bound theorem Reconciling supervaluation models with provability	369
		interpretation	375
XIII	The	variety of non-reductive approaches	379
	65.	An inconsistency	380
	66.	On a truth theory of Friedman and Sheard	383
	67.	Fitch's models	386
	6 8.	Introducing semi-inductive definitions	390
	69.	Semi-inductive models for reflective truth	394
XIV	_	ogue: applications and perspectives	401
		A logical theory of constructions: informal motivations	402
	70B.	A logical theory of constructions: basic syntax	403
	71.	Axioms for the computation relations	407
	72.	Extending the logical theory of constructions with higher	
		reflection	411
	73.	Proof-theoretic reduction	416
	74.	Perspectives: related work in Artificial Intelligence	410
		and Theoretical Linguistics	419
	<i>7</i> 5.	Sense and denotation as algorithm and value: subsuming	400
		theories of reflective truth under abstract recursion theory	422
Bibli	ograp	hy	425
Inde	x		441
List	of Svi	nbols	453