CONTENTS

	Pr	eface	, xx
1.	Th	ne Three-Dimensional Structure of Proteins	1
	A.	The primary structure of proteins	3
	В.	Methods for determination of three-dimensional structure	4
		1. Structures of crystalline proteins by x-ray diffraction methods	4
		2. Neutron diffraction	6
		3. Structure of proteins in solution from NMR methods	7
	C.	The three-dimensional structure of proteins	8
		1. The structural building blocks	9
		2. The Ramachandran diagram	14
		3. Motifs or supersecondary structures	20
		4. Assembly of proteins from the building blocks	22
	D.	Protein diversity	25
		1. Introns, exons, and inteins and exteins	25
		2. Divergent evolution of families of proteins	26
		3. Convergent evolution	28
		4. Convergence or divergence?	30
		5. α/β Barrel (or TIM barrel) proteins	30
		6. Dehydrogenases and domains	32
		7. Evolution of proteins by fusion of gene fragments	32
		8. Homology, sequence identity, and structural similarity	33
	E.	Higher levels of organization: Multienzyme complexes	34
		1. Multiheaded enzymes and the noncovalent association	
		of different activities	35
		2. The <i>arom</i> complex	36
		3. The pyruvate dehydrogenase complex	37
		4. DNA polymerases	37
		5. Reasons for multiple activities and multienzyme complexes	38
	F.	The structure of enzyme-substrate complexes	38
		1. Methods for examining stable enzyme-substrate complexes	39
		2. Example 1: The serine proteases	40
		3. Example 2: Lysozyme	43

ITENT	

vi

	G. Flexibility and conformational mobility of proteins	44
	 Are the crystal and solution structures of an enzyme 	
	essentially identical?	45
	2. Modes of motion and flexibility observed in proteins	46 50
	3. Protein mobility and enzyme mechanism	50
2.	Chemical Catalysis	54
	A. Transition state theory	54
	1. The significance and the application of transition	
	state theory	57
	2. The Hammond postulate	57
	3. Chemical basis of the Hammond postulate	58
	B. Principles of catalysis	59
	1. Where, why, and how catalysis is required	59
	2. General-acid-base catalysis	62
	3. Intramolecular catalysis: The "effective concentration"	.
	of a group on an enzyme	65
	4. Entropy: The theoretical basis of intramolecular catalysis	68
	and effective concentration	72
	5. "Orbital steering"	73
	6. Electrostatic catalysis7. Metal ion catalysis	74
	•	77
	C. Covalent catalysis1. Electrophilic catalysis by Schiff base formation	77
	Pyridoxal phosphate—Electrophilic catalysis	79
	3. Thiamine pyrophosphate—Electrophilic catalysis	82
	4. Nucleophilic catalysis	84
	D. Structure-activity relationships	85
	1. Nucleophilic attack at the carbonyl group	86
	Factors determining nucleophilicity and leaving	00
	group ability	88
	E. The principle of microscopic reversibility or detailed balance	93
	F. The principle of kinetic equivalence	94
	G. Kinetic isotope effects	96
	1. Primary isotope effects	96
	2. Multiple isotope effects	98
	3. Secondary isotope effects	98
	4. Solvent isotope effects	99
	H. Summary of classical factors of enzyme catalysis	100

ന		

vii

3.	Th	ne Basic Equations of Enzyme Kinetics	103
	A.	Steady state kinetics	103
		 The experimental basis: The Michaelis-Menten equation Interpretation of the kinetic phenomena for single-substrate 	104
		reactions: The Michaelis-Menten mechanism	105
		3. Extensions and modifications of the Michaelis-Menten	100
		mechanism	106
	В.	The significance of the Michaelis-Menten parameters	108
		1. The meaning of k_{cat} : The catalytic constant	108
		2. The meaning of K_M : Real and apparent equilibrium constants	109
		3. The meaning of k_{cat}/K_M : The specificity constant	110
	C.	Graphical representation of data	111
	D.	Inhibition	112
		1. Competitive inhibition	113
		2. Noncompetitive, uncompetitive, and mixed inhibition	113
	E.	Nonproductive binding	114
	F.	$k_{\rm cat}/K_M = k_2/K_{\rm s}$	116
	G.	Competing substrates	116
		1. An alternative formulation of the Michaelis-Menten equation	116
		2. Specificity for competing substrates	117
	H.	Reversibility: The Haldane equation	117
		1. Equilibria in solution	117
		2. Equilibria on the enzyme surface (internal equilibria)	118
	I.	Breakdown of the Michaelis-Menten equation	119
	J.	Multisubstrate systems	119
		1. The random sequential mechanism	120
		2. The ordered mechanism	120
		3. The Theorell-Chance mechanism	120
		4. The ping-pong (or substituted-enzyme or	120
		double-displacement) mechanism	
	K.	Useful kinetic shortcuts	122 122
		 Calculation of net rate constants Use of transit times instead of rate constants 	123
			125
	L.	Thermodynamic cycles 1. Basic thermodynamic cycles	125
		Two ligands or substrates binding to an enzyme	126
		Linked ionization and equilibria: Microscopic and	-20
		macroscopic constants	127

CONTENTS

viii

1	
4. Hypothetical steps: Mutations	129
5. Double mutant cycles	129
Measurement and Magnitude of Individual	470
Rate Constants	132
Part 1 Methods for measurement: An introduction to pre-steady state kinetics	132
A. Rapid mixing and sampling techniques	133
1. The continuous-flow method	133
2. The stopped-flow method	134
3. Rapid quenching techniques	135
B. Flash photolysis	136
C. Relaxation methods	137
1. Temperature jump	137
2. Nuclear magnetic resonance	138
D. Analysis of pre-steady state and relaxation kinetics	139
1. Simple exponentials	139
2. Association of enzyme and substrate	143
3. Consecutive reactions	143
4. Parallel reactions	149
5. Derivation of equations for temperature jump	149
6. A general solution of two-step consecutive reversible reactions	150
7. Experimental application of pre-steady state kinetics	153
E. The absolute concentration of enzymes	155
1. Active-site titration and the magnitudes of "bursts"	155
2. The dependence of the burst on substrate concentration	156
3. Active-site titration versus rate assay	158
Part 2 The magnitude of rate constants	
for enzymatic processes	158
A. Upper limits on rate constants	158
Association and dissociation	158
2. Chemical processes	162
3. Proton transfers	162
B. Enzymatic rate constants and rate-determining processes	164
1. Association of enzymes and substrates	164
2. Association can be rate-determining for k_{cat}/K_M	166
3. Dissociation of enzyme-substrate and enzyme-product	
complexes	167
4. Enzyme-product release can be rate-determining for k_{cat}	167
5. Conformational changes	167

~	\sim		7	Έ	N.	7	ď
U	w	I١	1	E	ľ	L	

		CONTENTS	ix
5.	TI	ne pH Dependence of Enzyme Catalysis	169
	A.	Ionization of simple acids and bases: The basic equations	169
		1. Extraction of pK_a 's by inspection of equations	173
	В.	The effect of ionizations of groups in enzymes on kinetics	173
		1. The simple theory: The Michaelis-Menten mechanism	174
		2. The pH dependence of k_{cat} , k_{cat}/K_M , K_M , and $1/K_M$	174
		3. A simple rule for the prediction and assignment of pK_a 's	175
	C.	Modifications and breakdown of the simple theory	176
		1. Modifications due to additional intermediates	176
		2. Breakdown of the simple rules: Briggs-Haldane kinetics	
		and change of rate-determining step with pH: Kinetic pK_a 's	178
		3. An experimental distinction between kinetic and	
		equilibrium p K_a 's	179
		4. Microscopic and macroscopic pK_a 's	179
	D.	The influence of surface charge on pK_a 's of groups in enzymes	179
	E.	Graphical representation of data	181
	F.	Illustrative examples and experimental evidence	182
		1. The pK_a of the active site of chymotrypsin	183
	G.	Direct titration of groups in enzymes	184
		1. The effect of D_2O on pH/pD and p K_a 's	185
		2. Methods	185
	H.	The effect of temperature, polarity of solvent, and ionic	
		strength on pK_a 's of groups in enzymes and in solution	187
	I.	Highly perturbed pK_a 's in enzymes	188
6.	Pr	actical Methods for Kinetics and Equilibria	191
	A.	Spectrometry and methods for kinetics	191
		1. Spectrophotometry	191
		2. Spectrofluorimetry	192
		3. Circular dichroism	193
		4. Automated spectrophotometric and spectrofluorimetric	
		procedures	195
		5. Coupled assays	196
		6. Automatic titration of acid or base	196
		7. Radioactive procedures	196
		8. Label-free optical detection	199
	В.	Plotting kinetic data	199
		1. Exponentials	199
		2. Second-order reactions	200
		3. Michaelis-Menten kinetics	201

CONTENTS

x

	C. 1	Determination of protein—ligand dissociation constants	202
		1. Kinetics	202
	2	2. Equilibrium dialysis	202
		3. Equilibrium gel filtration	203
		4. Ultracentrifugation	204
		5. Filter assays	205
		6. Spectroscopic methods	205
		7. Stoichiometric titration	206
		8. Microcalorimetry	207
	D.	Plotting binding data	207
		1. The single binding site	207
		2. Multiple binding sites	208
		Computer fitting of data	209
		Statistics, errors of observation, and accuracy	209
	1.	1. Normal or Gaussian distribution	210
		2. Errors in sampling	210
		3. Combining errors of measurement	211
		4. Poisson distribution	212
		5. Signal to noise in absorbance, circular dichroism,	
		fluorescence, and radioactive counting	212
	Ap	pendix: Measurement of protein concentration	214
7.	De	tection of Intermediates in Enzymatic Reactions	216
	٨	Pre-steady state versus steady state kinetics	216
	Λ.	1. Detection of intermediates: What is "proof"?	217
	D	Chymotrypsin: Detection of intermediates by stopped-flow	
	ъ.	spectrophotometry, steady state kinetics, and	
		product partitioning	218
		1. Detection of intermediates from a "burst" of product release	218
		2. Proof of formation of an intermediate from pre-steady	
		state kinetics under single-turnover conditions	219
		3. Detection of the acylenzyme in the hydrolysis of esters	
		by steady state kinetics and partitioning experiments	223
		4. Detection of the acylenzyme in the hydrolysis of amides and peptides	229
		5. The validity of partitioning experiments and some possible	
		experimental errors	230
	C	Further examples of detection of intermediates	
	٠,	by partition and kinetic experiments	231
		1. Alkaline phosphatase	231

		CONTENTS	хi
		2. Acid phosphatase	233
		3. β-Galactosidase	233
	D.	Aminoacyl-tRNA synthetases: Detection of intermediates	
	υ.	by quenched flow, steady state kinetics, and isotope exchange	235
		1. The reaction mechanism	235
		2. The editing mechanism	239
	E.	Detection of conformational changes	242
	F.	The future	242
8.	St	ereochemistry of Enzymatic Reactions	245
		Optical activity and chirality	245
		1. Notation	246
		2. Differences between the stereochemistries of enzymatic and	
		nonenzymatic reactions	247
		3. Conformation and configuration	249
	В.	Examples of stereospecific enzymatic reactions	249
		1. NAD+- and NADP+-dependent oxidation and reduction	249
		2. Stereochemistry of the fumarase-catalyzed hydration	
		of fumarate	250
		3. Demonstration that the enediol intermediate in aldose–ketose	051
		isomerase reactions is syn	251
		4. Use of locked substrates to determine the anomeric	252
		specificity of phosphofructokinase	232
	C.	Detection of intermediates from retention or inversion	253
		of configuration at chiral centers	253
		1. Stereochemistry of nucleophilic reactions	254
		2. The validity of stereochemical arguments	255
		3. Intermediates in reactions of lysozyme and β -galactosidase	255 255
	D.	The chiral methyl group	433
		1. The fundamental difference between generating a chiral methyl group from a methylene group and converting a	
		chiral methyl group into methylene	256
		2. The chirality assay	256
		3. Stereochemistry of the malate synthase reaction	258
	100		259
	E.	Chiral phosphate 1. A preview of phosphoryl transfer chemistry	259
		A preview of phosphoryl transfer elements Chirality of phosphoryl derivatives	260
		Chiranty of phosphoryl derivatives Examples of chiral phosphoryl transfer	262
		4. Positional isotope exchange	265
		5. A summary of the stereochemistry of enzymatic phosphoryl	
		transfers	266

CONTENTS						
	~	\sim	TIT	T 7 %	יד.	$\neg c$
	- (')	11	N I	н.г	NI	. `

xii

	F.	Stereoelectronic control of enzymatic reactions	266
		1. Pyridoxal phosphate reactivity	267
		2. Stereoelectronic effects in reactions of proteases	270
9.	Ad	tive-Site-Directed and Enzyme-Activated	
	Iri	reversible Inhibitors: "Affinity Labels" and	
	"S	uicide Inhibitors"	273
	A.	Chemical modification of proteins	273
		1. The chemical reactivity of amino acid side chains	276
	В.	Active-site-directed irreversible inhibitors	277
	C.	Enzyme-activated irreversible inhibitors	280
		Pyridoxal phosphate-linked enzymes	284
		2. Monoamine oxidases and flavoproteins	285
	D.	Slow, tight-binding inhibition	286
		1. Kinetics of slow, tight-binding inhibition	286
10.	Co	onformational Change, Allosteric Regulation,	
		otors, and Work	289
	A.	Positive cooperativity	289
	В.	Mechanisms of allosteric interactions and cooperativity	291
		1. The Monod-Wyman-Changeux (MWC) concerted	
		mechanism	292
		2. The Koshland-Némethy-Filmer (KNF) sequential model	295
		3. The general model	296 296
	~	4. Nested cooperativity	
		Negative cooperativity and half-of-the-sites reactivity	296
	D.	Quantitative analysis of cooperativity	297
		1. The Hill equation: A measure of cooperativity	297
		2. The MWC binding curve3. The KNF binding curve	300 303
		4. Diagnostic tests for cooperativity; and MWC versus KNF	30.
		mechanisms	303
	E.	Molecular mechanism of cooperative binding to hemoglobin	304
		1. The physiological importance of the cooperative binding of oxygen	304
		2. Atomic events in the oxygenation of hemoglobin	304
		3. Chemical models of hemes	301
	F.		308

		CONTENTS	xiii
	G.	Phosphofructokinase and control by allosteric feedback	309
		1. The structure of the R state	311
		2. The structure of the T state	311
	Н.	Glycogen phosphorylase and control by phosphorylation	312
		1. Glycogen phosphorylase and regulation of glycogenolysis	312
		2. The allosteric activation of phosphorylases	314
	I.	G proteins: Molecular switches	315
	J.	Motor proteins	317
	K.	ATP synthesis by rotary catalysis: ATP synthase and F_1 -ATPase	318
11.	Fo	rces Between Molecules, and Binding Energies	324
	Α.	Interactions between nonbonded atoms	325
		Electrostatic interactions	325
		2. Nonpolar interactions (van der Waals or dispersion forces)	327
		3. The hydrogen bond	329
		4. Force fields for simulating energies in proteins and	331
		complexes	
	В.	The binding energies of proteins and ligands	332 332
		1. The hydrophobic bond	334
		2. Hydrogen bonds, salt bridges and the hydrogen bond inventory	337
	C	Experimental measurements of incremental energies	339
	C.	Binding versus specificity	339
		2. Estimation of increments in binding energy from kinetics	340
	D.	Entropy and binding	345
		Enthalpy – entropy compensation	346
	F.	_	347
12.	E:	nzyme—Substrate Complementarity and ne Use of Binding Energy in Catalysis	349
	A	. Utilization of enzyme—substrate binding energy	 -
		in catalysis	350
		1. Binding energy lowers the activation energy of $k_{\rm cat}/K_M$	350
		2. Interconversion of binding and chemical activation energies	350
		3. Enzyme complementarity to transition state implies that k_{cat}/K_M is at a maximum	354

xiv	CONTENTS
-----	----------

	B. Experimental evidence for the utilization of officing energy	
	in catalysis and enzyme-transition state complementarity	356
	 Classic experiments: Structure – activity relationships 	~ ~ .
	of modified substrates	356
	2. Transition state analogues: Probes of complementarity	356
	3. Catalytic antibodies (abzymes)	361
	4. Structure-activity experiments on engineered enzymes	362
	C. Evolution of the maximum rate: Strong binding of the	
	transition state and weak binding of the substrate	362
	1. The principle of maximization of K_M at constant k_{cat}/K_M	363
	2. Experimental observations on K_{M} 's	364
	3. The perfectly evolved enzyme for maximum rate	368
	D. Molecular mechanisms for the utilization of binding energy	368
	1. Strain	369
	2. Induced fit	369
	3. Nonproductive binding	371
	4. The unimportance of strain, induced fit, and nonproductive	
	binding in specificity	372
	5. Strain, induced fit, nonproductive binding, and steady	272
	state kinetics	372
	6. Conclusions about the nature of strain: Strain or stress?	372
	E. Effects of rate optimization on accumulation	254
	of intermediates and internal equilibria in enzymes	374
	1. Accumulation of intermediates	374
	2. Balanced internal equilibria	375
13.	Specificity and Editing Mechanisms	377
	A. Limits on specificity	378
	Michaelis-Menten kinetics	380
	2. The general case	381
	3. Interacting active sites	382
	4. The stereochemical origin of specificity	383
	B. Editing or proofreading mechanisms	384
	Editing in protein synthesis	385
	2. Editing in DNA replication	389
	C. The cost of accuracy	395
	1. The cost-selectivity equation for editing mechanisms	395
	2. Single-feature recognition: $f = f'f''$	397
	3. Double-feature recognition: $f'f'' > f$	399
	5. 25000 10000 1000 pm. 5. J	

_		
Ke	combinant DNA Technology	40
Α.	The structure and properties of DNA	40
	DNA may be replicated: DNA polymerases	40
	2. Gaps in DNA may be sealed: DNA ligases	40
	3. Duplex DNA may be cleaved at specific sequences:	
	Restriction endonucleases	4
	4. DNA fragments may be joined by using enzymes	4
	5. Joining DNA by complementary homopolymeric tails:	
	Terminal transferase	4
	6. Amplifying DNA by the polymerase chain reaction (PCR)	4
	7. Processive versus distributive polymerization	4
В.	Cloning enzyme genes for overproduction	4
	1. Vectors	4
	2. Screening	4
C.	Site-specific mutagenesis for rational design	4
	Random mutagenesis and repertoire selection	4
	1. Random mutagenesis	4
	2. Repertoire selection: Phage display	4
. P	rotein Engineering	4:
	rotein Engineering Part 1 Dissection of the structure, activity,	4:
	Part 1 Dissection of the structure, activity, and mechanism of an enzyme:	
	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase	4
A	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase . Mechanistic goals	4
A B	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase . Mechanistic goals . The tyrosyl-tRNA synthetase	4
A B	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase . Mechanistic goals	4
A B	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase Mechanistic goals The tyrosyl-tRNA synthetase Requirements for systematic site-directed mutagenesis studies	4
A B	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase Mechanistic goals The tyrosyl-tRNA synthetase Requirements for systematic site-directed mutagenesis studies 1. Active-site titration	4
A B	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase Mechanistic goals The tyrosyl-tRNA synthetase Requirements for systematic site-directed mutagenesis studies Active-site titration Pre-steady state kinetics	4
A B	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase Mechanistic goals The tyrosyl-tRNA synthetase Requirements for systematic site-directed mutagenesis studies 1. Active-site titration 2. Pre—steady state kinetics 3. Starting point: The crystal structure of the E·Tyr-AMP	4
A B C	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase Mechanistic goals The tyrosyl-tRNA synthetase Requirements for systematic site-directed mutagenesis studies 1. Active-site titration 2. Pre—steady state kinetics 3. Starting point: The crystal structure of the E·Tyr-AMP complex	4
A B C C	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase Mechanistic goals The tyrosyl-tRNA synthetase Requirements for systematic site-directed mutagenesis studies 1. Active-site titration 2. Pre—steady state kinetics 3. Starting point: The crystal structure of the E·Tyr-AMP complex Choice of mutation	4
A B C C	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase Mechanistic goals The tyrosyl-tRNA synthetase Requirements for systematic site-directed mutagenesis studies 1. Active-site titration 2. Pre—steady state kinetics 3. Starting point: The crystal structure of the E·Tyr-AMP complex	4
A B C C	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase Mechanistic goals The tyrosyl-tRNA synthetase Requirements for systematic site-directed mutagenesis studies Active-site titration Pre-steady state kinetics Starting point: The crystal structure of the E·Tyr-AMP complex Choice of mutation Strategy: Free energy profiles and difference energy diagrams	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
AA BB CC	Part 1 Dissection of the structure, activity, and mechanism of an enzyme: The tyrosyl-tRNA synthetase Mechanistic goals The tyrosyl-tRNA synthetase Requirements for systematic site-directed mutagenesis studies 1. Active-site titration 2. Pre—steady state kinetics 3. Starting point: The crystal structure of the E·Tyr-AMP complex Choice of mutation Strategy: Free energy profiles and difference energy diagrams	4

kvi CONTENTS

		2. Discovery of enzyme – intermediate complementarity:	
		Balancing internal equilibrium constants; sequestration	
		of unstable intermediates	430
		3. Detection of an induced-fit process	432
		4. The catalytic mechanism for activation of tyrosine	432
		5. Mechanism of transfer step	435
	G.	Relationship between apparent binding energies	
		from difference energies and incremental binding energies	435
	H.	Probing evolution: "Reverse genetics"	438
		1. Differential and uniform binding changes	438
		2. Fine-tuning activity of tyrosyl-tRNA synthetase toward [ATP]	439
		3. Optimizing rate in a multistep reaction	440
	I.	Linear free energy relationships in binding energies	442
	J.	Probing the gross structure and symmetry of the enzyme	
		by mutagenesis	444
		1. Domain structure of the enzyme	445
		2. Construction of heterodimers	446
	K.	Measuring the free energy of hydrolysis of Tyr-AMP	449
	P	art 2 Redesigning an enzyme: Subtilisin	450
		Subtilisin	450
			-100
	D.	Dissection of the catalytic triad and the oxyanion binding site	450
	•	_	452
	C.	Redesigning specificity	452 452
		1. Subsites	452 453
	_	2. Subtiloligase	
	D.	Engineering of stability and other properties	454
16.	Ca	se Studies of Enzyme Structure and Mechanism	457
	A.	The dehydrogenases	458
		1. The alcohol dehydrogenases	460
		2. L-Lactate and L-malate dehydrogenases	465
		3. Glyceraldehyde 3-phosphate dehydrogenase	469
		4. Some generalizations about dehydrogenases	472
	В.	The proteases	472
	-	The serine proteases	473
		2. The cysteine proteases	482
		3. The zinc proteases	482
		4 The carboxyl (aspartyl) proteases	486

	CONTEN	NTS xvii
	C. Ribonucleases	491
	The structure of ribonuclease A and its complexes	493
	2. Mechanism of barnase	495
	D. Lysozyme	497
	1. The oxocarbenium ion	498
	2. Electrostatic and general-acid catalysis	498
	3. Binding energies of the subsites	499
	E. Some generalizations	500
17.	Protein Stability	508
	A. Protein denaturation	509
	1. Thermodynamics of protein folding	509
	2. Solvent denaturation	513
	3. Acid- or base-induced denaturation	516
	4. Two-state versus multistate transitions	517
	B. Structure of the denatured state	518
	1. The denatured state under denaturing conditions, U	520
	2. The denatured state at physiological conditions, D ^{Phys}	520
	3. First- and second-order transitions	521
	C. Measurement of changes in stability	522
	1. Thermal denaturation	522
	2. Solvent denaturation	522
	D. Energetics of formation of structure	523
	1. α Helixes	523
	2. β -Sheet propensities	532
	3. The hydrophobic core	532
	4. Disulfide crosslinks	534
	5. Relationship between statistical surveys and	535
	measured energetics	535
	6. Additivity of binding energy changes	536
	E. Stability-activity tradeoff?	330
	F. Prediction of three-dimensional structure	536
	from primary structure	330
18	Kinetics of Protein Folding	540
	A. Kinetics of folding	541
	1. Basic methods	541
	2. Multiple phases and <i>cis</i> -peptidyl-prolyl bonds	541

CONTENTS

	B.	Two-state kinetics	54 3
		1. Effects of denaturant on unfolding and folding kinetics	543
		2. Interpretation of the rate laws for denaturation and folding:	
		The Tanford β value	544
		3. Effects of temperature on folding	545
		4. Two-state kinetics and intermediates	547
		5. Kinetics tests for intermediates	547
	C.	Multistate kinetics	553
		1. Are intermediates on or off pathway?	553
	D.	Transition states in protein folding	556
		1. What is a transition state in protein folding?	557
		2. Can we apply transition state theory?	558
	E.	Introduction to Φ -value analysis	558
		1. Changes in energy levels on mutation	559
		2. Choice of mutations: Nondisruptive deletions	560
		3. Relationship between Φ and the Brønsted β	562
		4. Fractional values of Φ	562
		5. Benchmarking of simulations with Φ values	563
	F.	¹ H/ ² H-exchange methods	563
		1. ¹ H/ ² H-exchange at equilibrium	563
		2. Exchange at equilibrium cannot be used to determine	200
		pathways	566
		3. Uses of equilibrium ¹ H/ ² H-exchange in folding studies	567
		4. Quenched-flow ¹ H/ ² H-exchange	567
		5. Φ-value analysis versus quenched-flow ¹ H/ ² H-exchange	568
	G.	Folding of peptides	569
		1. Loops	569
		2. α Helixes	569
		3. β Hairpin	570
		4. Very fast folding small proteins	570
19.	Fo	lding Pathways and Energy Landscapes	573
	A.	Levinthal's paradox	575
	B.	Folding of CI2	576
		1. Structure of the native protein	576
		2. Folding kinetics	577
		3. Structures of peptide fragments	577
		4. Structure of the denatured protein	578
		5. Structure of the transition state	578
		6. Molecular dynamics simulations of the transition state	583

	CONTENTS	xix
C.	The nucleation-condensation mechanism	583
	1. The lessons from CI2 folding	583
	2. The nucleation-condensation (or -collapse) mechanism	585
	3. Direct evidence for nucleation-condensation in assembly	
	of protein fragments	587
D.	Folding of barnase	588
	1. Structure of the native protein	588
	2. Folding kinetics	589
	3. Structures of peptide fragments	589
	4. Structure of the denatured protein	589
	5. Structures of the intermediate and transition state	
	for unfolding	590
	6. Molecular dynamics, Φ values, and NMR conspire to	#O.1
	describe the folding pathway	591
E.	Folding pathway of barstar at microsecond resolution	591
F.	Unified folding scheme?	593
G.	Insights from theory	597
	1. Lattice simulations	597
	2. Spin glass theory and other abstract methods	598
	3. The folding funnel	598
Н.	Optimization of folding rates	600
	Factors that determine rate constants for two-state folding	601
I.	Molecular chaperones	603
1.	Chaperones and heat-shock proteins	603
	2. GroEL (Hsp60 or Cpn60)	604
	3. A real folding funnel	611
In	ndex	615