Contents

I.	<u>Introduction</u>
	Results from ordinary differential equations; examples
	of physical systems governed by partial differential
	equations.
II.	Nonlinear Elliptic Boundary Value Problems of Second Order 14
	Maximum principles. Function spaces. Existence theory
	of second order elliptic problems. Eigenvalue problems.
	Monotone iteration schemes. A simple bifurcation
	problem. An initial value problem. Stability.
	A singular perturbation problem.
III.	Functional Analysis
	Banach Spaces. The Riesz-Schauder theory. Frechet
	derivatives. Implicit function theorem. Analytic
	operators. Decomposition of Vector Fields.
IV.	Bifurcation at a Simple Eigenvalue
	The Navier Stokes equations. Continuation of solutions.
	Bifurcation - Poincaré-Lindstedt series. Stability of
	bifurcating solutions.

V.	Bifurcation of Periodic Solutions
	Riesz-Schauder theory for a parabolic operator.
	Solution of the bifurcation problems. Formal
	stability of the bifurcating solutions; Floquet
	exponents. Examples from Chemical Reactor theory.
VI.	The Mathematical Problems of Hydrodynamic Stability 125
	Lyapounov's theorem for the Navier Stokes
	equations.
VII.	Topological Degree Theory and its Applications 141
	Finite dimensional degree theory. Leray-Schauder
	degree theory. Bifurcation by Leray-Schauder
	degree. Theorems of Amann and Rabinowitz.
VIII.	The Real World
	Examples from hydrodynamics. Bénard and Taylor
	Problems.