Contents

Preface			XI
1	Intr	Introduction to Wavelets	
	1.1	Wavelets and Wavelet Expansion Systems	2
		What is a Wavelet Expansion or a Wavelet Transform?	2
		What is a Wavelet System?	2
		More Specific Characteristics of Wavelet Systems	3
		Haar Scaling Functions and Wavelets	5
		What do Wavelets Look Like?	5
		Why is Wavelet Analysis Effective?	6
	1.2	The Discrete Wavelet Transform	7
	1.3	The Discrete-Time and Continuous Wavelet Transforms	8
	1.4	Exercises and Experiments	9
	1.5	This Chapter	9
2	A Multiresolution Formulation of Wavelet Systems		10
	2.1	Signal Spaces	10
	2.2	The Scaling Function	11
		Multiresolution Analysis	12
	2.3	The Wavelet Functions	14
	2.4	The Discrete Wavelet Transform	17
	2.5	A Parseval's Theorem	18
	2.6	Display of the Discrete Wavelet Transform and the Wavelet Expansion	18
	2.7	Examples of Wavelet Expansions	20
	2.8	An Example of the Haar Wavelet System	23
3	Filter Banks and the Discrete Wavelet Transform		31
	3.1	Analysis – From Fine Scale to Coarse Scale	31
		Filtering and Down-Sampling or Decimating	32
	3.2	Synthesis – From Coarse Scale to Fine Scale	36
		Filtering and Up-Sampling or Stretching	36
	3.3	Input Coefficients	37
	3.4	Lattices and Lifting	38

;	3.5	Different Points of View	38
		Multiresolution versus Time-Frequency Analysis	38
		Periodic versus Nonperiodic Discrete Wavelet Transforms	38
		The Discrete Wavelet Transform versus the Discrete-Time Wavelet Transform	39
		Numerical Complexity of the Discrete Wavelet Transform	40
4	Base	es, Orthogonal Bases, Biorthogonal Bases, Frames, Tight Frames, and U	n-
		ditional Bases	41
	4.1	Bases, Orthogonal Bases, and Biorthogonal Bases	41
		Matrix Examples	43
		Fourier Series Example	44
		Sinc Expansion Example	44
	4.2	Frames and Tight Frames	45
		Matrix Examples	46
		Sinc Expansion as a Tight Frame Example	47
	4.3	Conditional and Unconditional Bases	48
5	The	Scaling Function and Scaling Coefficients, Wavelet and Wavelet Coef	fi-
	cien		5 0
	5.1	Tools and Definitions	50
		Signal Classes	50
		Fourier Transforms	51
		Refinement and Transition Matrices	52
	5.2	Necessary Conditions	53
	5.3	Frequency Domain Necessary Conditions	54
	5.4	Sufficient Conditions	56
		Wavelet System Design	57
	5.5	The Wavelet	58
	5.6	Alternate Normalizations	59
	5.7	Example Scaling Functions and Wavelets	59
		Haar Wavelets	60
		Sinc Wavelets	60
		Spline and Battle-Lemarié Wavelet Systems	62
,	5.8	Further Properties of the Scaling Function and Wavelet	62
		General Properties not Requiring Orthogonality	63
		Properties that Depend on Orthogonality	64
	5.9	Parameterization of the Scaling Coefficients	65
		Length-2 Scaling Coefficient Vector	65
		Length-4 Scaling Coefficient Vector	66
		Length-6 Scaling Coefficient Vector	66
ļ	5.10	Calculating the Basic Scaling Function and Wavelet	67
		Successive Approximations or the Cascade Algorithm	67
		Iterating the Filter Bank	68
		Successive approximations in the frequency domain	68
		The Dyadic Expansion of the Scaling Function	70

6	Res	gularity, Moments, and Wavelet System Design	79
	6.1	K-Regular Scaling Filters	73
	6.2	Vanishing Wavelet Moments	73
	6.3	Daubechies' Method for Zero Wavelet Moment Design	75 76
	6.4	Non-Maximal Regularity Wavelet Design	83
	6.5	Relation of Zero Wavelet Moments to Smoothness	83
	6.6	Vanishing Scaling Function Moments	86
	6.7	Approximation of Signals by Scaling Function Projection	86
	6.8	Approximation of Scaling Coefficients by Samples of the Signal	87
	6.9	Coiflets and Related Wavelet Systems	88
		Generalized Coifman Wavelet Systems	93
	6.10	Minimization of Moments Rather than Zero Moments	97
7	Ger	neralizations of the Basic Multiresolution Wavelet System	98
	7.1	Tiling the Time-Frequency or Time-Scale Plane	98
		Nonstationary Signal Analysis	99
		Tiling with the Discrete-Time Short-Time Fourier Transform	100
		Tiling with the Discrete Two-Band Wavelet Transform	100
		General Tiling	101
	7.2	Multiplicity-M (M-Band) Scaling Functions and Wavelets	102
		Properties of M-Band Wavelet Systems	103
		M-Band Scaling Function Design	109
		M-Band Wavelet Design and Cosine Modulated Methods	110
	7.3	Wavelet Packets	110
		Full Wavelet Packet Decomposition	110
		Adaptive Wavelet Packet Systems	111
	7.4	Biorthogonal Wavelet Systems	114
		Two-Channel Biorthogonal Filter Banks	114
		Biorthogonal Wavelets	116
		Comparisons of Orthogonal and Biorthogonal Wavelets	117
		Example Families of Biorthogonal Systems	118
		Cohen-Daubechies-Feauveau Family of Biorthogonal Spline Wavelets	118
		Cohen-Daubechies-Feauveau Family of Biorthogonal Wavelets with Less Dissimilar	
		Filter Length	118
		Tian-Wells Family of Biorthogonal Coiflets	119
	7 -	Lifting Construction of Biorthogonal Systems	119
	7.5	Multiwavelets Construction of True Park M. W.	122
		Construction of Two-Band Multiwavelets	123
		Properties of Multiwavelets	124
		Approximation, Regularity and Smoothness	124
		Support	124
		Orthogonality Inches what is a f Multi-scale To a f	125
		Implementation of Multiwavelet Transform	125
		Examples Comprise Hardin Manager & Malice Land	126
		Geronimo-Hardin-Massopust Multiwavelets	126
		Spline Multiwavelets	127

		Other Constructions	127
		Applications	128
	7.6	Overcomplete Representations, Frames, Redundant Transforms, and Adaptive Bas	
		Overcomplete Representations	129
		A Matrix Example	129
		Shift-Invariant Redundant Wavelet Transforms and Nondecimated Filter Banks	132
		Adaptive Construction of Frames and Bases	133
	7.7	Local Trigonometric Bases	134
		Nonsmooth Local Trigonometric Bases	136
		Construction of Smooth Windows	136
		Folding and Unfolding	137
		Local Cosine and Sine Bases	139
	= 0	Signal Adaptive Local Trigonometric Bases	141
	7.8	Discrete Multiresolution Analysis, the Discrete-Time Wavelet	
		Transform, and the Continuous Wavelet Transform	141
		Discrete Multiresolution Analysis and the Discrete-Time Wavelet Transform	143
		Continuous Wavelet Transforms	144
		Analogies between Fourier Systems and Wavelet Systems	145
3		er Banks and Transmultiplexers	148
	8.1	Introduction	148
		The Filter Bank	148
		Transmultiplexer	150
		Perfect Reconstruction—A Closer Look	150
		Direct Characterization of PR	150
		Matrix characterization of PR	152
		Polyphase (Transform-Domain) Characterization of PR	153
	8.2	Unitary Filter Banks	155
	8.3	Unitary Filter Banks—Some Illustrative Examples	160
	8.4	M-band Wavelet Tight Frames	162
	8.5	Modulated Filter Banks	164
		Unitary Modulated Filter Bank	167
	8.6	Modulated Wavelet Tight Frames	168
	8.7	Linear Phase Filter Banks	169
		Characterization of Unitary $H_p(z)$ — PS Symmetry	173
		Characterization of Unitary $H_p(z)$ — PCS Symmetry	174
		Characterization of Unitary $H_p(z)$ — Linear-Phase Symmetry	174
		Characterization of Unitary $H_p(z)$ — Linear Phase and PCS Symmetry	175
		Characterization of Unitary $H_p(z)$ — Linear Phase and PS Symmetry	175
	8.8	Linear-Phase Wavelet Tight Frames	176
	8.9	Linear-Phase Modulated Filter Banks	177
		DCT/DST I/II based $2M$ Channel Filter Bank	178
		Linear Phase Modulated Wavelet Tight Frames	178
	8.11	Time-Varying Filter Bank Trees	179
		Growing a Filter Bank Tree	182
		Pruning a Filter Bank Tree	182

CONTENTS

ix

		Wavelet Bases for the Interval	183
		Wavelet Bases for $L^2([0,\infty))$	183
		Wavelet Bases for $L^2((-\infty,0])$	184
	0.10	Segmented Time-Varying Wavelet Packet Bases	185
	8.12	Filter Banks and Wavelets—Summary	186
9	Cal	culation of the Discrete Wavelet Transform	188
	9.1	Finite Wavelet Expansions and Transforms	188
	9.2	Periodic or Cyclic Discrete Wavelet Transform	190
	9.3	Filter Bank Structures for Calculation of the DWT and Complexity	191
	9.4	The Periodic Case	192
	9.5	Structure of the Periodic Discrete Wavelet Transform	194
	9.6	More General Structures	195
10	Wav	velet-Based Signal Processing and Applications	196
		Wavelet-Based Signal Processing	196
	10.2	Approximate FFT using the Discrete Wavelet Transform	197
		Introduction	197
		Review of the Discrete Fourier Transform and FFT	198
		Review of the Discrete Wavelet Transform	200
		The Algorithm Development	201
		Computational Complexity	203
		Fast Approximate Fourier Transform	203
		Computational Complexity	203
		Noise Reduction Capacity	204
		Summary	204
	10.3	Nonlinear Filtering or Denoising with the DWT	205
		Denoising by Thresholding	206
		Shift-Invariant or Nondecimated Discrete Wavelet Transform	207
		Combining the Shensa-Beylkin-Mallat-à trous Algorithms and Wavelet Denoising	209
		Performance Analysis	209
		Examples of Denoising	210
		Statistical Estimation	211
	10.5	Signal and Image Compression	212
		Fundamentals of Data Compression	212
		Prototype Transform Coder	213
		Improved Wavelet Based Compression Algorithms	215
		Why are Wavelets so Useful?	216
	10.7	Applications	217
		Numerical Solutions to Partial Differential Equations	217
		Seismic and Geophysical Signal Processing	217
		Medical and Biomedical Signal and Image Processing	218
		Application in Communications	218
		Fractals	218
	10.8	Wavelet Software	218

<u>x</u>	Contents
11 Summary Overview	219
11.1 Properties of the Basic Multiresolution Scaling Function	219
11.2 Types of Wavelet Systems	221
12 References	223
Bibliography	224
Appendix A. Derivations for Chapter 5 on Scaling Functions	246
Appendix B. Derivations for Section on Properties	253
Appendix C. Matlab Programs	258
Index	266