CONTENTS

Introduct	<u>ion</u>	1
Part One	Type I Representations and Intertwining Operators for $0^{\circ}(2h+1,1)$	10
1.	Elementary representations of the pseudo-orthogonal group	
	1. Group structure. Preliminaries	
	1.A The group O(2h + 1,1) and its Lie algebra	11
	1.B Subgroups and decompositions	12
	1.C The compactified Euclidean space as a homogeneous space of G	16
	1.D Matrix realization of various subgroups of G. Construction of	
	the Bruhat decomposition	18
	1.E Relationship between the Bruhat and the Iwasawa decomposition	
	The Haar measure	25
	2. Induced representations. Definition and various realizations	
	2.A Synopsis on the irreducible representations of the orthogonal	
	group	28
	2.B Covariant vector-valued functions on G. Definition of	
	the induced representations	32
	2.C The compact picture. K-content of the elementary representations	34
	2.D The noncompact picture: x-space realization	37
	3. Further properties of the elementary representations	
	3.A Equivalence, irreducibility, completeness	41
	3.B Characters of elementary representations	47
	3.C The spherical trace function. The character of a sub-	
	quotient of an elementary representation	53
	3.D The principal series of unitary representations	54
	3.E Infinitesimal generators and Casimir operators of the	
	elementary representations	57

II. Intertwining distributions and their Fourier transform	
4. Intertwining operators: x-space realization	
4.A Group theoretical definition of the intertwining operators	60
4.B The intertwining distributions in the noncompact picture	
5. Momentum space expansion of the intertwining distribution and	
positivity	
5.A Fourier transform of $G_{\chi}(x_{j}, 3_{1}, 3_{2})$	66
5.B Harmonic expansion of $G_{\chi}(p)$	
5.C Normalization and positivity for nonexceptional representations.	
Complementary series of unitary IR's	75
5.D Wightman positivity	81
III. Properties of elementary representations at exceptional integer	
points	
6. Nondecomposable representations and intertwining differential	
operators	
6.A Subrepresentations of exceptional elementary representations	85
6.B Intertwining differential operators. Partial equivalence among	
the representations $\chi_{m{\ell_{m{v}}}}^{(')\pm}$	89
6.C Hermitian forms on invariant subspaces. Exceptional series	
of unitary representations	94
6.D Differential identities between hermitian forms for exceptional	
representations	101
7. Discrete series of unitary representations	
7.A Definition and general properties of the discrete series of	
SO * (2n,1)	103

7. B. Unitarily induced representations on G/K	107
7. C. Realization of the unitary representation $\mathbf{U}_{\mathbf{S}}^{+}$ in the	
space \mathcal{L}_{s+}^{2} (NA)	110
$7.\ \ \text{D.}\ \text{Kinvariants.}$ Solution of the eigenvalue problem for the	
Casimir operator. The discrete series $\cup_{oldsymbol{\ell}\mathcal{V}}$	115
7. E. Two-point Green function. Equivalence of $\mathtt{U}_{\ell \nu}^+$ with the	
subrepresentation of $\chi_{\ell u}^{\prime au}$ acting in $ exttt{D}_{\ell u}^+$	122
8. The Plancherel theorem. Concluding remarks	
8. A. Harmonic analysis of the left regular representation of	
SO [†] (2h + 1, 1) for integer h	128
8. B. Harmonic analysis on $SO^{\uparrow}(2n,1)$. The role of the discret	е
series	131
8. C. Synopsis on unitary type 1 representations. Summary of	
equivalence relations	135
Appendix A. Symmetric tensor representations of SO(n) and	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	138
	1,70
A.1 Harmonic extension of homogeneous polynomial functions	470
G	138
A.2 $SO(n-1)$ expansion of homogeneous polynomials. The zonal	
	141
A.3 Evaluation of the proportionality constant a, between th scalar products in \mathcal{V}^{ℓ} and $\mathcal{H}^{(n)}$	
· ·	143
A.4 Derivation of factorized expression for the projection	
± 11	144
A.5 Interior differentiation on the complex cone. Expression	_
for the convolution of two tensors in terms of homogeneou	.s 149
polynomials	-
Appendix B. The special cases $h=1$ and $h=\frac{1}{2}$. Relation to the	リフク
formalism of two by two matrices	m a ==
B.1 Reduction of the representation χ of $O^{\uparrow}(3,1)$ into ele	men

		tary representations of SL(2,C)	153
	B.2	Vanishing of the projection operators $\prod^{\ell s}$ for $s > 1$	155
	B.3	The structure of exceptional representations for h=1	157
	B.4	Elementary representations of $SO^{\uparrow}(2,1)$. The analytic discr	ete
		series	159
	Apper	ndix C. Positivity of the invariant scalar product in the	165
		subspace Dev of Ctv	
	C.1	The problem. Asymptotic expansion of $f(p, z)$ for $p \rightarrow 0$	165
		Existence of nontrivial positive semidefinite hermitian for	orm
		$(f,G_{\ell\nu}^{l^+} f)$ on $C_{\ell\nu}^{l^-}$	167
Part	t Two	Conformal Partial Wave Analysis	173
	IV.	Clebsch-Gordan expansion of the tensor product of two	
		unitary principal or supplementary series representations	
	9.	The Kronecker product of two elementary representations	
		as an induced representation on G/MA	175
	10.	Construction of the Clebsch-Gordan expansion	
	10.A	.Clebsch-Gordan kernels	181
	10.B	Application of the Plancherel theorem to the Kronecker	
		product of two principal series representations	192
	10.0	.Odd space time dimension 2h	200
	10.1).Analytic continuation in c_1 and c_2	203

11.	Special cases and further properties of the	
	expansion formula	
11.A.	The Clebsch-Gordan kernel for two class I representations.	
	Symmetry and normalization	206
11.B.	Identities for the Clebsch-Gordan kernels at exceptional	
	integer points	213
11.C.	Tensor product representation and Clebsch-Gordan	
	expansion for distributions	217
V. <u>Dy</u>	namical derivation of vacuum operator product expansion in	
Eu	clidean conformal quantum field theory	
12.	Renormalizable models of self-interacting scalar fields.	
	Dynamical equations for Euclidean Green functions	
10.		
±2•A•	A 6-dimensional model. Euclidean Green functions. Generating functionals	240
	Iductionals	219
12.B.	Graphical notation. li- and 2i-kernels	220
12.C.	Dynamical equations. Stress energy tensor. Ward identities	221
12.D.	A more realistic model	224
13.	Invariance and invariant solutions of the dynamical equations.	_
	Conformal partial wave expansion for the Euclidean Green function	ions
13.A.	Euclidean conformal invariance of the equations	225
13.В.	Conformal invariant 2- and 3-point functions	227
13.C.	Skeleton diagram expansion	230
13.D.	Conformal partial wave expansion	232
13.E.	Further expansions	234
14.	Implications of the dynamical equations.	
	Pole structure of conformal partial waves	
14.A.	Poles in the conformal partial waves implied by the vertex	
	bootstrap equations	238
14.B.	Pole structure of the n-point partial waves. Expression for the	
71	residues	240
	Basic conformal covariant tensor fields. Analyticity assumption	n 241
15.	Derivation of an operator product expansion for vacuum expectation values	
	PULLUT AUTRES	

15.A Another form of the conformal expansion involving a	
Minkowski momentum space integral. The Q-kernels	244
15.B The vacuum operator product expansion	249
15.C Wightman positivity for the 4-point function	253
16. The problem of crossing symmetry. Concluding remark	<u>:s</u>
16.A Crossing symmetry and duality	254
16.B A crossing symmetry representation for the 4-point	
function	256
16.0 Summary and discussion	257
Appendix D. Proof of lemma 10.3.	
Appendix E. A summation formula involving ratios of Γ -func	tions 260
Appendix F. Partial Fourier transform of $V(x_4x_2x_3)$ and relative	ated
formulas	
F.1 Fourier transform in x3	262
F.2 Derivation of Eq.(13.36) for the conformal partial v	_{vave} 263
Appendix G. Identities between Q and Y functions for	
partially equivalent representations	267
References	268
Figures 1, 2, 3	78 - 280