Contents | Preface | xiii | |--|------| | Chapter 1. Banach Function Spaces | 1 | | 1. Banach Function Spaces
Banach function norms ρ ; Banach function spaces X ; Fatou's lemma; the Riesz-Fischer property. | 2 | | 2. The Associate Space The associate norm ρ' ; the associate space X' ; Hölder's inequality; the Lorentz-Luxemburg theorem; the dual space X^* . | 7 | | 3. Absolute Continuity of the Norm Functions of absolutely continuous norm; the subspace X_a of functions of absolutely continuous norm; the closure X_b of the bounded functions supported in sets of finite measure; comparison of X_a , X_b , and X . | 13 | | 4. Duality and Reflexivity The associate space and duality; the dual of X_a ; conditions for coincidence of X' and X^* ; reflexivity and absolute continuity of the norm. | 19 | | 5. Separability $\sigma(X, X')$ -completeness of Banach function spaces X ; separable measure spaces; separability of Banach function spaces; separability and reflexivity. | 24 | | Exercises and Further Results for Chapter 1 | 30 | | Notes for Chapter 1 | 33 | | | vii | | viii | Contents | |------|----------| |------|----------| | Chapter 2. Rearrangement-Invariant Banach Function Spaces | 35 | |--|-----| | 1. Distribution Functions and Decreasing Rearrangements The distribution function μ_f ; equimeasurable functions; the decreasing rearrangement f^* ; the L^p -norm in terms of | 36 | | μ_f and f^* . | | | 2. An Inequality of Hardy and Littlewood | 43 | | The Hardy-Littlewood inequality; decreasing rearrange- | | | ments of products; resonant and strongly resonant measure | | | spaces. | 50 | | 3. An Elementary Maximal Function The maximal function f^{**} ; subadditivity of $f \rightarrow f^{**}$; the | 52 | | method of retracts; the Hardy-Littlewood-Pólya relation; | | | Hardy's lemma; conditional expectations. | | | 4. Rearrangement-Invariant Spaces | 59 | | Rearrangement-invariant Banach function spaces; rearrange- | | | ment-invariance of the associate space; order structure and | | | the Hardy-Littlewood-Pólya relation; conditional expecta- | | | tions; the Luxemburg representation theorem. | | | 5. The Fundamental Function | 65 | | The fundamental function; duality and separability of re- | | | arrangement-invariant spaces; the Lorentz spaces $\Lambda(X)$ and | | | $M(X)$; comparison of X , $\Lambda(X)$, and $M(X)$. | 73 | | 6. The Spaces $L^1 + L^{\infty}$ and $L^1 \cap L^{\infty}$
The norms in $L^1 + L^{\infty}$ and $L^1 \cap L^{\infty}$; Hölder's inequality; | 73 | | mutual associativity; extremal properties. | | | 7. Measure-Preserving Transformations | 79 | | Measure-preserving transformations; Lorentz' lemma; Ryff's | ,,, | | theorem; recovery of f from f^* by a measure-preserving | | | transformation. | | | Exercises and Further Results for Chapter 2 | 87 | | Notes for Chapter 2 | 92 | | | | | Chapter 3. Interpolation of Operators on Rearrangement-
Invariant Spaces | 95 | | 1. Interpolation Spaces | 96 | | Compatible couples; the spaces $X_0 + X_1$ and $X_0 \cap X_1$; admissible operators; interpolation pairs; interpolation spaces. | | Contents ix | 2. Interpolation Between L^* and L^∞
Admissible operators and the Hardy-Littlewood-Pólya relation; substochastic operators; the Hardy-Littlewood-Pólya theorem on substochastic matrices; the Calderón-Ryff theorem; interpolation spaces between L^1 and L^∞ . | 105 | |--|-----| | 3. The Hardy-Littlewood Maximal Operator The Hardy-Littlewood maximal operator M ; a weak-type estimate; Lebesgue's differentiation theorem; equivalence of $(Mf)^*$ and f^{**} ; Hardy's inequalities; the Hardy-Littlewood maximal theorem. | 117 | | 4. The Hilbert Transform The Hilbert transform H ; the maximal Hilbert transform \mathcal{H} ; the Loomis lemmas; the Stein-Weiss lemma; weak-type estimates for H and \mathcal{H} ; existence of the Hilbert transform; the M. Riesz theorem. | 126 | | 5. Operators of Joint Weak Type $(p_0, q_0; p_1, q_1)$
The Calderón operator S_{σ} ; operators of joint weak type $(p_0, q_0; p_1, q_1)$; Calderón's theorem; indices of rearrangement-invariant spaces; Boyd's theorem; the Hardy-Littlewood maximal operator and the Hilbert transform on rearrangement-invariant spaces. | 141 | | 6. Norm-Convergence of Fourier Series Fourier series; the conjugate-function operator; a.e. convergence of the principal-value integral; the conjugate-function operator as a multiplier; norm-convergence of Fourier series in rearrangement-invariant spaces. | 154 | | 7. Theorems of Lorentz and Shimogaki Decreasing rearrangements and differences of functions; decomposition with respect to the Hardy-Littlewood-Pólya relation. | 166 | | Exercises and Further Results for Chapter 3 | 174 | | Notes for Chapter 3 | 179 | | Chapter 4. The Classical Interpolation Theorems | 183 | | 1. The Riesz Convexity Theorem Operators of strong type (p,q) ; an interpolation theorem for positive integral operators; bilinear forms; the M. Riesz convexity theorem. | 185 | X Contents | 2. The Riesz-Thorin Convexity Theorem The Hadamard three-lines theorem; the Riesz-Thorin con- | 195 | |---|-----| | vexity theorem; Young's inequality; the Hausdorff-Young theorem; multilinear interpolation; interpolation of compact | | | operators. A polytic Families of Operators | 205 | | 3. Analytic Families of Operators An extension of the three-lines theorem; analytic families of operators; Stein's interpolation theorem for analytic families; weighted L^p -spaces; Stein's theorem on interpolation with change of measures. | 203 | | 4. The Marcinkiewicz Interpolation Theorem Lorentz $L^{p,q}$ -spaces; operators of weak type (p,q) ; the Marcinkiewicz interpolation theorem; the Paley-Hausdorff-Young theorem; fractional integral operators; the Hardy-Littlewood-Sobolev theorem of fractional integration. | 216 | | 5. Restricted Weak Type and A.E. Convergence Nonnegative sublinear operators; operators of restricted weak type (p, q); the Stein-Weiss interpolation theorem for restricted weak-type operators; Moon's theorem; maximal operators; Banach's principle; Stein's theorem on limits of sequences of operators. | 230 | | 6. $L\log L$ and $L_{\rm exp}$
The Zygmund spaces $L\log L$ and $L_{\rm exp}$; a limiting case of the Marcinkiewicz interpolation theorem; $L\log L$ and the Hardy-Littlewood maximal operator; theorems of M. Riesz and Zygmund for the conjugate-function operator; Zygmund spaces; Lorentz-Zygmund spaces. | 243 | | 7. Further Extensions of the Weak-Type Theory The Calderón maximal interpolation operator for rearrange- ment-invariant spaces; multilinear interpolation of <i>n</i> initial estimates; interpolation of convolution operators. | 255 | | 8. Orlicz Spaces Young's functions; Orlicz classes; complementary Young's functions; Orlicz spaces; the associate space; the Luxemburg norm; separability; duality. | 265 | | Exercises and Further Results for Chapter 4 | 280 | | Notes for Chapter 4 | 286 | Contents xi | Chapter 5. The K-Method | 291 | |---|-----| | 1. The K-Method | 293 | | The Peetre J- and K-functionals; Gagliardo completion; the | | | K-functional for (L^1, L^∞) ; the (θ, q) -spaces; the fundamental | | | interpolation inequality; an interpolation theorem for (θ, q) - | | | spaces; the k-method. | | | 2. Structure Theorems for the (θ, q) -spaces | 307 | | Holmstedt's formula; the reiteration theorem; the <i>J</i> -method; | | | the equivalence theorem; the density theorem; Wolff's | | | theorem. | | | 3. Monotone Interpolation Spaces | 319 | | Monotone Riesz-Fischer norms; monotone intermediate | | | spaces; Cwikel's lemma; divisibility; characterization of | | | monotone interpolation spaces. | | | 4. Besov and Sobolev Spaces | 331 | | Modulus of smoothness; Besov spaces $B_{\alpha,q}^p$; Sobolev spaces | | | W_k^p ; K-functional for (L^p, W_k^p) ; Marchaud's inequality; | | | Sobolev type embedding theorems. | | | 5. Interpolation Between W_k^1 and W_k^{∞} | 347 | | The Whitney covering lemma; Taylor polynomials; an | | | extension theorem; the K-functional for (W_k^1, W_k^{∞}) . | | | 6. Re H^1 and BMO | 362 | | The nontangential maximal operator; a theorem of Hardy | | | and Littlewood; the Hardy space Re H^1 ; the space BMO of | | | functions of bounded mean oscillation; a lemma of Spanne | | | and Stein; atomic decomposition; equivalent characteriza- | | | tions of Re H^1 ; the K-functional for $(Re(H^1), L^{\infty})$; Feffer- | | | man's duality theorem. | | | 7. BMO and Weak- L^{∞} | 376 | | Oscillation of f^* and f ; the John-Nirenberg lemma; weak- | | | L^{∞} ; the rearrangement-invariant hull of BMO; restricted | | | weak type (∞, ∞) ; an interpolation theorem; the space BLO | | | of functions of bounded lower oscillation; the Hardy-Little- | | | wood maximal operator on BMO. | | | 8. Interpolation Between L^1 and BMO | 390 | | The sharp function; the space $BMO(\mathbb{R}^n)$; the K-functional | | | for (L^1, BMO) ; interpolation spaces between L^1 and BMO; | | | the Hardy-Littlewood maximal operator on BMO(R"). | | | xii | Contents | |-----|----------| | | | | 9. Jones' Solution of $\bar{\partial} f = \mu$ | 401 | |---|-----| | Carleson measures; Jones' constructive solution of $\bar{\partial} f = \mu$. | | | 10. Interpolation Between H^1 and H^{∞} | 411 | | The K-functional for (H^1, H^{∞}) ; characterization of the | | | interpolation spaces between H^1 and H^{∞} . | | | Exercises and Further Results for Chapter 5 | 426 | | Notes for Chapter 5 | 436 | | • | | | Appendix A | 441 | | | | | References | 443 | | Bibliography | 445 | | Dionography | 773 | | Index | 461 | | | | | List of Notations | 467 |