Contents

Preface	xiii
Chapter 1. Banach Function Spaces	1
1. Banach Function Spaces Banach function norms ρ ; Banach function spaces X ; Fatou's lemma; the Riesz-Fischer property.	2
2. The Associate Space The associate norm ρ' ; the associate space X' ; Hölder's inequality; the Lorentz-Luxemburg theorem; the dual space X^* .	7
3. Absolute Continuity of the Norm Functions of absolutely continuous norm; the subspace X_a of functions of absolutely continuous norm; the closure X_b of the bounded functions supported in sets of finite measure; comparison of X_a , X_b , and X .	13
4. Duality and Reflexivity The associate space and duality; the dual of X_a ; conditions for coincidence of X' and X^* ; reflexivity and absolute continuity of the norm.	19
5. Separability $\sigma(X, X')$ -completeness of Banach function spaces X ; separable measure spaces; separability of Banach function spaces; separability and reflexivity.	24
Exercises and Further Results for Chapter 1	30
Notes for Chapter 1	33
	vii

viii	Contents
------	----------

Chapter 2. Rearrangement-Invariant Banach Function Spaces	35
1. Distribution Functions and Decreasing Rearrangements The distribution function μ_f ; equimeasurable functions; the decreasing rearrangement f^* ; the L^p -norm in terms of	36
μ_f and f^* .	
2. An Inequality of Hardy and Littlewood	43
The Hardy-Littlewood inequality; decreasing rearrange-	
ments of products; resonant and strongly resonant measure	
spaces.	50
3. An Elementary Maximal Function The maximal function f^{**} ; subadditivity of $f \rightarrow f^{**}$; the	52
method of retracts; the Hardy-Littlewood-Pólya relation;	
Hardy's lemma; conditional expectations.	
4. Rearrangement-Invariant Spaces	59
Rearrangement-invariant Banach function spaces; rearrange-	
ment-invariance of the associate space; order structure and	
the Hardy-Littlewood-Pólya relation; conditional expecta-	
tions; the Luxemburg representation theorem.	
5. The Fundamental Function	65
The fundamental function; duality and separability of re-	
arrangement-invariant spaces; the Lorentz spaces $\Lambda(X)$ and	
$M(X)$; comparison of X , $\Lambda(X)$, and $M(X)$.	73
6. The Spaces $L^1 + L^{\infty}$ and $L^1 \cap L^{\infty}$ The norms in $L^1 + L^{\infty}$ and $L^1 \cap L^{\infty}$; Hölder's inequality;	73
mutual associativity; extremal properties.	
7. Measure-Preserving Transformations	79
Measure-preserving transformations; Lorentz' lemma; Ryff's	,,,
theorem; recovery of f from f^* by a measure-preserving	
transformation.	
Exercises and Further Results for Chapter 2	87
Notes for Chapter 2	92
Chapter 3. Interpolation of Operators on Rearrangement- Invariant Spaces	95
1. Interpolation Spaces	96
Compatible couples; the spaces $X_0 + X_1$ and $X_0 \cap X_1$; admissible operators; interpolation pairs; interpolation spaces.	

Contents ix

2. Interpolation Between L^* and L^∞ Admissible operators and the Hardy-Littlewood-Pólya relation; substochastic operators; the Hardy-Littlewood-Pólya theorem on substochastic matrices; the Calderón-Ryff theorem; interpolation spaces between L^1 and L^∞ .	105
3. The Hardy-Littlewood Maximal Operator The Hardy-Littlewood maximal operator M ; a weak-type estimate; Lebesgue's differentiation theorem; equivalence of $(Mf)^*$ and f^{**} ; Hardy's inequalities; the Hardy-Littlewood maximal theorem.	117
4. The Hilbert Transform The Hilbert transform H ; the maximal Hilbert transform \mathcal{H} ; the Loomis lemmas; the Stein-Weiss lemma; weak-type estimates for H and \mathcal{H} ; existence of the Hilbert transform; the M. Riesz theorem.	126
5. Operators of Joint Weak Type $(p_0, q_0; p_1, q_1)$ The Calderón operator S_{σ} ; operators of joint weak type $(p_0, q_0; p_1, q_1)$; Calderón's theorem; indices of rearrangement-invariant spaces; Boyd's theorem; the Hardy-Littlewood maximal operator and the Hilbert transform on rearrangement-invariant spaces.	141
6. Norm-Convergence of Fourier Series Fourier series; the conjugate-function operator; a.e. convergence of the principal-value integral; the conjugate-function operator as a multiplier; norm-convergence of Fourier series in rearrangement-invariant spaces.	154
7. Theorems of Lorentz and Shimogaki Decreasing rearrangements and differences of functions; decomposition with respect to the Hardy-Littlewood-Pólya relation.	166
Exercises and Further Results for Chapter 3	174
Notes for Chapter 3	179
Chapter 4. The Classical Interpolation Theorems	183
1. The Riesz Convexity Theorem Operators of strong type (p,q) ; an interpolation theorem for positive integral operators; bilinear forms; the M. Riesz convexity theorem.	185

X Contents

2. The Riesz-Thorin Convexity Theorem The Hadamard three-lines theorem; the Riesz-Thorin con-	195
vexity theorem; Young's inequality; the Hausdorff-Young theorem; multilinear interpolation; interpolation of compact	
operators. A polytic Families of Operators	205
3. Analytic Families of Operators An extension of the three-lines theorem; analytic families of operators; Stein's interpolation theorem for analytic families; weighted L^p -spaces; Stein's theorem on interpolation with change of measures.	203
4. The Marcinkiewicz Interpolation Theorem Lorentz $L^{p,q}$ -spaces; operators of weak type (p,q) ; the Marcinkiewicz interpolation theorem; the Paley-Hausdorff-Young theorem; fractional integral operators; the Hardy-Littlewood-Sobolev theorem of fractional integration.	216
5. Restricted Weak Type and A.E. Convergence Nonnegative sublinear operators; operators of restricted weak type (p, q); the Stein-Weiss interpolation theorem for restricted weak-type operators; Moon's theorem; maximal operators; Banach's principle; Stein's theorem on limits of sequences of operators.	230
6. $L\log L$ and $L_{\rm exp}$ The Zygmund spaces $L\log L$ and $L_{\rm exp}$; a limiting case of the Marcinkiewicz interpolation theorem; $L\log L$ and the Hardy-Littlewood maximal operator; theorems of M. Riesz and Zygmund for the conjugate-function operator; Zygmund spaces; Lorentz-Zygmund spaces.	243
7. Further Extensions of the Weak-Type Theory The Calderón maximal interpolation operator for rearrange- ment-invariant spaces; multilinear interpolation of <i>n</i> initial estimates; interpolation of convolution operators.	255
8. Orlicz Spaces Young's functions; Orlicz classes; complementary Young's functions; Orlicz spaces; the associate space; the Luxemburg norm; separability; duality.	265
Exercises and Further Results for Chapter 4	280
Notes for Chapter 4	286

Contents xi

Chapter 5. The K-Method	291
1. The K-Method	293
The Peetre J- and K-functionals; Gagliardo completion; the	
K-functional for (L^1, L^∞) ; the (θ, q) -spaces; the fundamental	
interpolation inequality; an interpolation theorem for (θ, q) -	
spaces; the k-method.	
2. Structure Theorems for the (θ, q) -spaces	307
Holmstedt's formula; the reiteration theorem; the <i>J</i> -method;	
the equivalence theorem; the density theorem; Wolff's	
theorem.	
3. Monotone Interpolation Spaces	319
Monotone Riesz-Fischer norms; monotone intermediate	
spaces; Cwikel's lemma; divisibility; characterization of	
monotone interpolation spaces.	
4. Besov and Sobolev Spaces	331
Modulus of smoothness; Besov spaces $B_{\alpha,q}^p$; Sobolev spaces	
W_k^p ; K-functional for (L^p, W_k^p) ; Marchaud's inequality;	
Sobolev type embedding theorems.	
5. Interpolation Between W_k^1 and W_k^{∞}	347
The Whitney covering lemma; Taylor polynomials; an	
extension theorem; the K-functional for (W_k^1, W_k^{∞}) .	
6. Re H^1 and BMO	362
The nontangential maximal operator; a theorem of Hardy	
and Littlewood; the Hardy space Re H^1 ; the space BMO of	
functions of bounded mean oscillation; a lemma of Spanne	
and Stein; atomic decomposition; equivalent characteriza-	
tions of Re H^1 ; the K-functional for $(Re(H^1), L^{\infty})$; Feffer-	
man's duality theorem.	
7. BMO and Weak- L^{∞}	376
Oscillation of f^* and f ; the John-Nirenberg lemma; weak-	
L^{∞} ; the rearrangement-invariant hull of BMO; restricted	
weak type (∞, ∞) ; an interpolation theorem; the space BLO	
of functions of bounded lower oscillation; the Hardy-Little-	
wood maximal operator on BMO.	
8. Interpolation Between L^1 and BMO	390
The sharp function; the space $BMO(\mathbb{R}^n)$; the K-functional	
for (L^1, BMO) ; interpolation spaces between L^1 and BMO;	
the Hardy-Littlewood maximal operator on BMO(R").	

xii	Contents

9. Jones' Solution of $\bar{\partial} f = \mu$	401
Carleson measures; Jones' constructive solution of $\bar{\partial} f = \mu$.	
10. Interpolation Between H^1 and H^{∞}	411
The K-functional for (H^1, H^{∞}) ; characterization of the	
interpolation spaces between H^1 and H^{∞} .	
Exercises and Further Results for Chapter 5	426
Notes for Chapter 5	436
•	
Appendix A	441
References	443
Bibliography	445
Dionography	773
Index	461
List of Notations	467