Contents

List of figures	XV	
Preface	xvii	
Preface to the Second Edition	xix	
1 Introduction	1	
2 Descriptive statistics	5	
Measures of 'central tendency'	8	
Measures of 'spread'	11	
Describing a set of data: in conclusion	17	
Comparing two sets of data with descriptive		
statistics	18	
Some important information about numbers	21	
3 Standard scores	25	
Comparing scores from different distributions	26	
The Normal Distribution	28	
The Standard Normal Distribution	30	

4 Introduction to hypothesis testing	35
Testing an hypothesis	36
The logic of hypothesis testing	41
One- and two-tailed predictions	42
5 Sampling	47
Populations and samples	48
Selecting a sample	49
Sample statistics and population parameters	51
Summary	56
6 Hypothesis testing with	
one sample	59
An example	60
When we do not have the known population standard deviation	64
Confidence intervals	69
Hypothesis testing with one sample: in conclusion	72
7 Selecting samples for comparison	73
Designing experiments to compare samples	74
The interpretation of sample differences	79
8 Hypothesis testing with	
two samples	81
The assumptions of the two sample t test	85
Related or independent samples	86
The related t test	86
The independent t test	89
Confidence intervals	0.2

9 Significance, error and power	95
Type I and Type II errors	96
Statistical power	98
The power of a test	99
The choice of α level	100
Effect size	101 103
Sample size	103
Conclusion	100
10 Introduction to the analysis	
of variance	111
Factors and conditions	112
The problem of many conditions and the t test	112
Why do scores vary in an experiment?	113
The process of analysing variability	118
The <i>F</i> distribution	121
Conclusion	123
11 One factor independent	
measures ANOVA	125
Analysing variability in the independent measures	
ANOVA	126
Rejecting the null hypothesis	132
Unequal sample sizes	133
The relationship of F to t	135
12 Multiple comparisons	137
The Tukey test (for all pairwise comparisons)	140
The Scheffé test (for complex comparisons)	144

13 One factor repeated measures ANOVA	149
Deriving the F value	150
Multiple comparisons	158
14 The interaction of factors in	
the analysis of variance	161
Interactions	164
Dividing up the between conditions sums of squares	167
Simple main effects	169
Conclusion	170
15 Calculating the two factor	
ANOVA	171
The two factor independent measures ANOVA	172
The two factor mixed design ANOVA	181
The two factor repeated measures ANOVA	193
A non-significant interaction	205
16 An introduction to nonparametric	:
analysis	207
Calculating ranks	212
17 Two sample nonparametric	
analyses	215
The Mann–Whitney U test (for independent samples)	216
The Wilcoxon signed-ranks test (for related samples)	224

18 One factor ANOVA for	
ranked data	231
Kruskal-Wallis test (for independent measures)	232
The Friedman test (for related samples)	240
19 Analysing frequency data:	
chi-square	247
Nominal data, categories and frequency counts	248
Introduction to χ^2	248
Chi-square (χ^2) as a 'goodness of fit' test	250
Chi-square (χ^2) as a test of independence	254
The chi-square distribution	256
The assumptions of the χ^2 test	257
20 Linear correlation and	
regression	261
Introduction	262
Pearson r correlation coefficient	264
Linear regression	270
The interpretation of correlation and regression	275
Problems with correlation and regression	276
The standard error of the estimate	278
The Spearman r_S correlation coefficient	279
Or multiple consolation and	
21 Multiple correlation and regression	283
_	284
Introduction to multivariate analysis	284
Partial correlation	289
Multiple correlation	291
Multiple regression	-/1

22	Complex analyses and	
	computers	295
Undertaking data analysis by computer		296
Com	Complex analyses	
Reliability		301
Factor analysis		304
	tivariate analysis of variance (MANOVA)	308
	riminant function analysis	312
Con	clusion	314
23	An introduction to the general	
	linear model	315
Mod	lels	316
An e	example of a linear model	318
	elling data	320
	model: the regression equation	323
	cting a good model	327
	paring samples (the analysis of variance once again)	333
Explaining variations in the data		337
The	general linear model	338
Note	s:	343
Glos	rsary	347
	rences	357
Δp	pendix: Acknowledgements and	
~ . Jo	statistical tables	359
A.1	The standard normal distribution tables	362
A.2	Critical values of the t distribution	363
A.3	Critical values of the F distribution	364
A.4	Critical values of the Studentized range statistic, q	366
A.5	Critical values of the Mann–Whitney <i>U</i> statistic	367
A.6	Critical values of the Wilcoxon T statistic	369

CONTENTS

A.7	Critical values of the chi-square (χ^2) distribution	370
A.8	Table of probabilities for χ_r^2 when k and n are small	371
A.9	Critical values of the Pearson r correlation coefficient	372
A.10	Critical values of the Spearman r_s ranked correlation	
	coefficient	373
Index		375